
Reachability for Finite-State Process
Algebras Using Static Analysis

Nataliya Skrypnyuk, Flemming Nielson
Technical University of Denmark

30. September 2011

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Main idea

Perform Static Analysis (in particular, Data Flow Analysis) on the
syntax of a process algebra;

Use the results to compute an overapproximation of the reachable
states;

If the state in question possibly reachable, construct states
reachable from the initial state in one step;

Reassess our overapproximation of reachability;

Continue until no more states or overapproximation does not
contain the state in question.

2 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

1 Process algebra with CSP synchronisation model (PA)

2 Data Flow Analysis of PA

3 Correct and complete reachability algorithm

3 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Syntax of PA

Syntactic classes: prefixed process variables, prefixed expressions, sums,
recursive process definitions, terminal process, parallel compositions, scope
restrictions. P is a linear PA process. E is an PA process. An PA program is a
uniquely labelled PA process with unique process variables.

P ::= a`.X |
a`.P |
P + P |
X := P |
0

E ::= P |
E qAq E |
hide A in P

4 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

SOS rules for PA

Prefixing: a`.P
a−−→

{`}
P

Choice: P1 + P2
a−−→
C

P ′
1 if P1

a−−→
C

P ′
1

Parallel processes: P1 qAq P2
a−−→
C

P ′
1 qAq P2 if P1

a−−→
C

P ′
1 and

a 6∈ A; P1 qAq P2
a−−−−→

C1 ∪ C2

P ′
1 qAq P ′

2 if P1
a−−→

C1

P ′
1, P2

a−−→
C2

P ′
2 and

a ∈ A;

Internalisation: hide A in P
τ−−→
C

hide A in P ′ if P
a−−→
C

P ′ and

a ∈ A; hide A in P
a−−→
C

hide A in P ′ if P
a−−→
C

P ′ and a 6∈ A;

Process definition: X := P
a−−→
C

P ′ if P
[
X/X := P

] a−−→
C

P ′.

5 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

SOS rules for PA

Prefixing: a`.P
a−−→

{`}
P

Choice: P1 + P2
a−−→
C

P ′
1 if P1

a−−→
C

P ′
1

Parallel processes: P1 qAq P2
a−−→
C

P ′
1 qAq P2 if P1

a−−→
C

P ′
1 and

a 6∈ A; P1 qAq P2
a−−−−→

C1 ∪ C2

P ′
1 qAq P ′

2 if P1
a−−→

C1

P ′
1, P2

a−−→
C2

P ′
2 and

a ∈ A;

Internalisation: hide A in P
τ−−→
C

hide A in P ′ if P
a−−→
C

P ′ and

a ∈ A; hide A in P
a−−→
C

hide A in P ′ if P
a−−→
C

P ′ and a 6∈ A;

Process definition: X := P
a−−→
C

P ′ if P
[
X/X := P

] a−−→
C

P ′.

5 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

SOS rules for PA

Prefixing: a`.P
a−−→

{`}
P

Choice: P1 + P2
a−−→
C

P ′
1 if P1

a−−→
C

P ′
1

Parallel processes: P1 qAq P2
a−−→
C

P ′
1 qAq P2 if P1

a−−→
C

P ′
1 and

a 6∈ A; P1 qAq P2
a−−−−→

C1 ∪ C2

P ′
1 qAq P ′

2 if P1
a−−→

C1

P ′
1, P2

a−−→
C2

P ′
2 and

a ∈ A;

Internalisation: hide A in P
τ−−→
C

hide A in P ′ if P
a−−→
C

P ′ and

a ∈ A; hide A in P
a−−→
C

hide A in P ′ if P
a−−→
C

P ′ and a 6∈ A;

Process definition: X := P
a−−→
C

P ′ if P
[
X/X := P

] a−−→
C

P ′.

5 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

SOS rules for PA

Prefixing: a`.P
a−−→

{`}
P

Choice: P1 + P2
a−−→
C

P ′
1 if P1

a−−→
C

P ′
1

Parallel processes: P1 qAq P2
a−−→
C

P ′
1 qAq P2 if P1

a−−→
C

P ′
1 and

a 6∈ A; P1 qAq P2
a−−−−→

C1 ∪ C2

P ′
1 qAq P ′

2 if P1
a−−→

C1

P ′
1, P2

a−−→
C2

P ′
2 and

a ∈ A;

Internalisation: hide A in P
τ−−→
C

hide A in P ′ if P
a−−→
C

P ′ and

a ∈ A; hide A in P
a−−→
C

hide A in P ′ if P
a−−→
C

P ′ and a 6∈ A;

Process definition: X := P
a−−→
C

P ′ if P
[
X/X := P

] a−−→
C

P ′.

5 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

SOS rules for PA

Prefixing: a`.P
a−−→

{`}
P

Choice: P1 + P2
a−−→
C

P ′
1 if P1

a−−→
C

P ′
1

Parallel processes: P1 qAq P2
a−−→
C

P ′
1 qAq P2 if P1

a−−→
C

P ′
1 and

a 6∈ A; P1 qAq P2
a−−−−→

C1 ∪ C2

P ′
1 qAq P ′

2 if P1
a−−→

C1

P ′
1, P2

a−−→
C2

P ′
2 and

a ∈ A;

Internalisation: hide A in P
τ−−→
C

hide A in P ′ if P
a−−→
C

P ′ and

a ∈ A; hide A in P
a−−→
C

hide A in P ′ if P
a−−→
C

P ′ and a 6∈ A;

Process definition: X := P
a−−→
C

P ′ if P
[
X/X := P

] a−−→
C

P ′.

5 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Examples of PA systems

X := a`1 .X + b`2 .0
a−−−→

{`1}
X := a`1 .X + b`2 .0

X := a`1 .X + b`2 .0
b−−−→

{`2}
0

X := a`1 .X qaqY := a`2 .b`3 .Y
a−−−−→

{`1, `2}

X := a`1 .X qaqb`3 .Y := a`2 .b`3 .Y

X := a`1 .X qaqb`3 .Y := a`2 .b`3 .Y
b−−−→

{`3}

X := a`1 .X qaqY := a`2 .b`3 .Y

6 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Examples of PA systems

X := a`1 .X + b`2 .0
a−−−→

{`1}
X := a`1 .X + b`2 .0

X := a`1 .X + b`2 .0
b−−−→

{`2}
0

X := a`1 .X qaqY := a`2 .b`3 .Y
a−−−−→

{`1, `2}

X := a`1 .X qaqb`3 .Y := a`2 .b`3 .Y

X := a`1 .X qaqb`3 .Y := a`2 .b`3 .Y
b−−−→

{`3}

X := a`1 .X qaqY := a`2 .b`3 .Y

6 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Static Analysis

Developed in the area of Program Analysis: Control Flow
Analysis, Data Flow Analysis etc.
Purpose: verifying a program by analysing program’s code;

Transferred to process calculi: verify the semantics without
building full LTS, by analysing the syntax;

7 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Data Flow Analysis of PA

Based on Data Flow Analysis for CCS by H.R.Nielson and
F.Nielson from 2006

Further process calculi: BioAmbients, broadcast calculus bKlaim

Reason: handling state space explosion

Adjustment of the traditional Data Flow Analysis to process calculi

fstate(E) = (E \ killstate) ∪ genstate

Labeled Transition System states instead of program points

8 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Transitions from E and Data
Flow Analysis of E

E
α−−→
C

E ′

Transition entry: exposed labels of E

Transition exit: exposed labels \ killed labels ∪ generated labels

Chain C corresponds to action name α

All the labels in the chain C are exposed

9 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Operators on PA expressions

Exposed operator E returns labels which may ”fire” in the next
transition

Kill operator K returns for a particular label those labels which
must cease to be available for execution after the corresponding
label has been executed

Generate operator G returns for a particular label those labels
which may become available for execution after the corresponding
label has been executed

Chains operator T returns labels to be executed together due to
synchronisation

10 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Data Flow Analysis example

E , X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Y := a`5 .Z := d`6 .Z

a ↓ {`1 7→ 1, `5 7→ 1}

E ′ , b`2 .X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Z := d`6 .Z

exposed of E : {`1 7→ 1, `3 7→ 1, `5 7→ 1}

chains: {`1 7→ 1, `5 7→ 1} etc.

kill(`1) = {`1 7→ 1, `3 7→ 1}, kill(`5) = {`5 7→ 1} etc.

generate(`1) = {`2 7→ 1}, generate(`5) = {`6 7→ 1} etc.

exposed of E ′: {`2 7→ 1, `6 7→ 1}

exposed(E) \ kill(`1) \ kill(`5) ∪ generate(`1) ∪ generate(`5) =
exposed(E ′)

11 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Data Flow Analysis example

E , X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Y := a`5 .Z := d`6 .Z

a ↓ {`1 7→ 1, `5 7→ 1}

E ′ , b`2 .X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Z := d`6 .Z

exposed of E : {`1 7→ 1, `3 7→ 1, `5 7→ 1}

chains: {`1 7→ 1, `5 7→ 1} etc.

kill(`1) = {`1 7→ 1, `3 7→ 1}, kill(`5) = {`5 7→ 1} etc.

generate(`1) = {`2 7→ 1}, generate(`5) = {`6 7→ 1} etc.

exposed of E ′: {`2 7→ 1, `6 7→ 1}

exposed(E) \ kill(`1) \ kill(`5) ∪ generate(`1) ∪ generate(`5) =
exposed(E ′)

11 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Data Flow Analysis example

E , X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Y := a`5 .Z := d`6 .Z

a ↓ {`1 7→ 1, `5 7→ 1}

E ′ , b`2 .X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Z := d`6 .Z

exposed of E : {`1 7→ 1, `3 7→ 1, `5 7→ 1}

chains: {`1 7→ 1, `5 7→ 1} etc.

kill(`1) = {`1 7→ 1, `3 7→ 1}, kill(`5) = {`5 7→ 1} etc.

generate(`1) = {`2 7→ 1}, generate(`5) = {`6 7→ 1} etc.

exposed of E ′: {`2 7→ 1, `6 7→ 1}

exposed(E) \ kill(`1) \ kill(`5) ∪ generate(`1) ∪ generate(`5) =
exposed(E ′)

11 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Data Flow Analysis example

E , X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Y := a`5 .Z := d`6 .Z

a ↓ {`1 7→ 1, `5 7→ 1}

E ′ , b`2 .X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Z := d`6 .Z

exposed of E : {`1 7→ 1, `3 7→ 1, `5 7→ 1}

chains: {`1 7→ 1, `5 7→ 1} etc.

kill(`1) = {`1 7→ 1, `3 7→ 1}, kill(`5) = {`5 7→ 1} etc.

generate(`1) = {`2 7→ 1}, generate(`5) = {`6 7→ 1} etc.

exposed of E ′: {`2 7→ 1, `6 7→ 1}

exposed(E) \ kill(`1) \ kill(`5) ∪ generate(`1) ∪ generate(`5) =
exposed(E ′)

11 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Data Flow Analysis example

E , X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Y := a`5 .Z := d`6 .Z

a ↓ {`1 7→ 1, `5 7→ 1}

E ′ , b`2 .X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Z := d`6 .Z

exposed of E : {`1 7→ 1, `3 7→ 1, `5 7→ 1}

chains: {`1 7→ 1, `5 7→ 1} etc.

kill(`1) = {`1 7→ 1, `3 7→ 1}, kill(`5) = {`5 7→ 1} etc.

generate(`1) = {`2 7→ 1}, generate(`5) = {`6 7→ 1} etc.

exposed of E ′: {`2 7→ 1, `6 7→ 1}

exposed(E) \ kill(`1) \ kill(`5) ∪ generate(`1) ∪ generate(`5) =
exposed(E ′)

11 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Data Flow Analysis example

E , X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Y := a`5 .Z := d`6 .Z

a ↓ {`1 7→ 1, `5 7→ 1}

E ′ , b`2 .X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Z := d`6 .Z

exposed of E : {`1 7→ 1, `3 7→ 1, `5 7→ 1}

chains: {`1 7→ 1, `5 7→ 1} etc.

kill(`1) = {`1 7→ 1, `3 7→ 1}, kill(`5) = {`5 7→ 1} etc.

generate(`1) = {`2 7→ 1}, generate(`5) = {`6 7→ 1} etc.

exposed of E ′: {`2 7→ 1, `6 7→ 1}

exposed(E) \ kill(`1) \ kill(`5) ∪ generate(`1) ∪ generate(`5) =
exposed(E ′)

11 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Data Flow Analysis example

E , X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Y := a`5 .Z := d`6 .Z

a ↓ {`1 7→ 1, `5 7→ 1}

E ′ , b`2 .X := a`1 .b`2 .X + c`3 .τ `4 .X q {a} q Z := d`6 .Z

exposed of E : {`1 7→ 1, `3 7→ 1, `5 7→ 1}

chains: {`1 7→ 1, `5 7→ 1} etc.

kill(`1) = {`1 7→ 1, `3 7→ 1}, kill(`5) = {`5 7→ 1} etc.

generate(`1) = {`2 7→ 1}, generate(`5) = {`6 7→ 1} etc.

exposed of E ′: {`2 7→ 1, `6 7→ 1}

exposed(E) \ kill(`1) \ kill(`5) ∪ generate(`1) ∪ generate(`5) =
exposed(E ′)

11 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Main Results for Data
Flow Analysis of PA programs

Generate, kill and chains operators on F predict all (and only)
transitions from F

Chains, generate, kill operators, chains-to-names correspondence
etc. are stable under SOS transitions;

the results of the operators on an PA program are enough to
reproduce its semantics., i.e. Data Flow Analysis of PA programs
not only correct, but also precise.

12 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Theorem
Given an PA program F , then for all E such that F

∗−−→ E , Γ

and Λ mappings for labels and process definitions computed on
F , we have:

each label is exposed in E at most once;

E
a−−→
C

E ′ if and only if C ∈ TΛJF K and C ⊆ EΓJEK;

EΓJE ′K = EΓJEK \ (∪`∈CKJF K(`))
⋃

(∪`∈CGΓJF K(`)).

13 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Idea: compute overapproxima-
tion of reachable labels

All labels exposed in the initial states are reachable;

For other labels to be reachable there should exist a chain such
that all labels in it are reachable;

Algorithm: recursively delete from the set of reachable labels those
that do not have any chain with all constituting labels in it being
in the set of reachable labels

14 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Algorithm: initialisation sep

proc init(F) is
for all ` ∈ Labs(F) do

gchains(`) := {C ∈ TΛJF K|∃`′ ∈ C such that ` ∈ GΓJF K(`′)}
return gchains

15 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Algorithm: refinement step

proc refine(F , S , gchains) is
L := S ; gchains ′ := gchains;
while ∃` ∈ Labs(F) such that (gchains ′(`) = ∅) ∧ (` 6∈ S) do

for all `′ ∈ Labs(F) do
gchains ′(`′) := gchains ′(`′)\{C ∈ TΛJF K|` ∈ C}

for all ` ∈ Labs(F) do
if gchains ′(`) 6= ∅ then

L := L ∪ {`};
return L, gchains ′

16 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Example of computing reach-
able labels

For F , (b`1 .a`2 .c`3 .0 + a`4 .a`5 .d`6 .0)q{a, b}qa`7 .0
we have
init(F) = {`1 7→ ∅, `2 7→ ∅, `3 7→ {{`2, `7}}, `4 7→ ∅, `5 7→
{{`4, `7}}, `6 7→ {{`5, `7}}, `7 7→ ∅}

With (L, gchains) = refine(F , EΓ JF K, init(F)),
we have
gchains = {`1 7→ ∅, `2 7→ ∅, `3 7→ ∅, `4 7→ ∅, `5 7→ {{`4, `7}}, `6 7→
{{`5, `7}}, `7 7→ ∅}
and therefore
L = {`1, `4, `5, `6, `7}.

17 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Example of computing reach-
able labels

For F , (b`1 .a`2 .c`3 .0 + a`4 .a`5 .d`6 .0)q{a, b}qa`7 .0
we have
init(F) = {`1 7→ ∅, `2 7→ ∅, `3 7→ {{`2, `7}}, `4 7→ ∅, `5 7→
{{`4, `7}}, `6 7→ {{`5, `7}}, `7 7→ ∅}

With (L, gchains) = refine(F , EΓ JF K, init(F)),
we have
gchains = {`1 7→ ∅, `2 7→ ∅, `3 7→ ∅, `4 7→ ∅, `5 7→ {{`4, `7}}, `6 7→
{{`5, `7}}, `7 7→ ∅}
and therefore
L = {`1, `4, `5, `6, `7}.

17 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Algorithm for reachability of S?

from the initial state Sin of F
Do some sanity check first: whether S? is impossible because
labels in it exclude each other or whether Sin = S?

Add Sin to the Worklist

Choose some S from the Worklist and compute
overapproximation L of labels reachable from S

If S? 6⊆ L then break;

Otherwise create all the transitions S −−→ S ′′

If one of S ′′ is equal to S? or we have encountered all S ′′s
before then we are done

Otherwise add all not encountered before S ′′ to the Worklist

Go to p. 2

18 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Examples

b`1 .a`2 .c`3 .0 + a`4 .a`5 .d`6 .0q{a, b}qa`7 .0
a−−−−→

{`4, `7}
a`5 .d`6 .0q{a, b}q0

In (a`1b`n .0 + c`
′
1d`′n .0)q∅qe`

′′
1f`

′′
n .0

the branch c`
′
1d`′n .0 interleaved with e`

′′
1f`

′′
n .0

is not explored while determining the reachability of e.g. `n

19 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Proved results

Lemma
if F

∗−−→ E
∗−−→ E ′ for some E and E ′ and L is computed by

refine on E then EΓJE ′K ⊆ L

Theorem
Given a PA program F , then F

∗−−→ E iff reach(F ,EΓJEK) = true .

20 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Conclusions

We have presented a complete reachability algorithm for process
algebras based on Static Analysis methods

Algorithm determines dead branches that cannot lead to the state
in question

Can be used with partial knowledge of the initial and goal states
(i.e. with subsets of exposed labels)

With efficient data structures additional overhead quadratic in the
length of the systax

Algorithm can be used just for initial state / some of the states, i.e.
in the usual way Static Analysis results are used

21 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Future work

Other systems allowing for compositional verification – other
process calculi etc.;

Infinite semantic models (i.e., utilising Control Flow Analysis);

Other properties checked – e.g. repeated reachability;

Property-directed computation;

Further reduction of the state space, e.g. through computing
independent actions;

Implementation and case studies.

22 / 23
N

Process algebra with CSP synchronisation model (PA) Data Flow Analysis of PA Correct and complete reachability algorithm

Thank you for attention!
Questions?

23 / 23
N

	Process algebra with CSP synchronisation model (PA)
	Data Flow Analysis of PA
	Correct and complete reachability algorithm

