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Reactive and hybrid systems

Reactive systems maintain a continuous interaction with their 
environment

‣  non-terminating 

‣  respect/enforce real-time properties

‣  cope with concurrency

‣  embedded in complex-continuous-critical env

→ difficult to develop correctly
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Is the software correct ?
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Hybrid automata
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Mixing discrete-continuous evolutions

‣ Finite state automata to model (discrete) reactive systems

‣ Differential equations to model continuous environments

‣ Hybrid automata: combine the two

‣ finite automata + continuous variables
‣ discrete transitions + differential equations
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Example

‣ Three environment components: 

-A tank containing water;
-A gas burner that can be turn on or off;
-A digital thermometer that monitors the 
temperature within the tank.

and a controller

‣ We want to design a controller strategy 
that maintains the temperature within an 
interval of safe temperatures. 

2 J.-F. Raskin

hybrid system that reaches a given set of states. As hybrid automata can be
very complex mathematical objects, restricted subclasses for which we have
automatic analysis methods have been introduced. In this introduction, we
focus on rectangular hybrid automata and show how they can be used to over-
approximate the behavior of more complex hybrid automata. We close the
chapter by referencing the literature to allow the reader into go deeper in this
flourishing research subject.

2 Hybrid Automata: A Model for Hybrid Systems

To illustrate the main notions about hybrid automata, we use a running ex-
ample throughout the chapter. The components of the running example are
depicted in Fig. 1. It shows a system composed of three devices: (i) a tank that
contains water and that can be heated using a gas burner, (ii) a gas burner
that can be turned on or turned off, and (iii) a thermometer that monitors the
temperature of the water inside the tank and periodically issues signals when
the temperature of the water in the tank is above or below certain thresholds.
Later, we will add to this system a controller that will observe the signals
issued by the thermometer and will issue orders to the gas burner in order to
maintain the temperature of the water within a given range.

Fig. 1. Our running example

We first describe in detail the behavior of the temperature of the water
in the tank. When the gas burner is OFF, the temperature of the water,
denoted by the variable x, decreases according to the following exponential
function: x(t) = Ie−Kt where I is the initial temperature of the water, K is a
constant that depends on the nature of the tank (how much it conducts heat
for example), and t denotes time. However, this law is only true when the
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Continuous part

‣ Behavior of the temperature in the tank

-Mode OFF:   x(t) = I e-Kt , i.e. x. = -Kx
-Mode ON:    x(t) = I e-Kt + h ( 1-e-Kt ), i.e. x. = K(h-x)

I=initial temperature of the water 
K=constant (nature of the tank) 
h=constant (power gas burner)
t=time.

‣ ON and OFF=modes of the tank evolution
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Evolution of the temperature

An introduction to hybrid automta 3

temperature of the water is greater than 20 degrees, the temperature of the
room where the tank is located. When the heater is OFF and the temperature
of the water is 20 degrees, then the temperature stays constant. On the other
hand, when the gas burner is ON, the temperature of the water increases
according to the following exponential function x(t) = Ie−Kt + h(1 − e−Kt)
where I, K, and t are as before and h is a constant that depends on the power
of the gas burner. Again, this rule is only true if the water in the tank has a
temperature that is less than or equal to 100 degrees. When the temperature
of the water reaches 100 degrees, it stays constant (the pressure increases but
we omit that in our model). Fig. 2 shows a fragment of a possible evolution
of the temperature of the water within the tank.

Fig. 2. One possible behavior of the tank

As we can see from the description of the evolution of the temperature
in the tank, the system is not purely continuous. The evolution of the tem-
perature depends on the mode of the system (the burner is ON or OFF, the
temperature is below or above 100 degrees), and the system can switch dis-
cretely from one mode to another (if the burner is turned off, for example).
Therefore, a natural model for such a system should mix continuous evolu-
tions with discrete switches. Hybrid automata are well suited to describe such
complex mixed discrete-continuous behaviors. Their syntax is defined in the
next subsection.

2.1 Syntax

A hybrid automaton is a generalized finite-state automaton that is equipped
with continuous variables. The discrete changes of the hybrid system are mod-
eled by edges of the automaton, and the continous evolutions of the hybrid
system are modeled by differential equations that label locations of the au-
tomaton. The syntax of hybrid automata is defined as follows.

Definition 1 [Hybrid Automaton] A hybrid automaton H is a tuple 〈Loc, Edge,
Σ, X, Init, Inv, Flow, Jump〉 where:

Evolution of the temp. is not purely continuous. It depends on the 
mode ON and OFF for example, and that it is below 100° or not.

Mode changes

Continuous 
Evolutions

...
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An HA for the tank

An introduction to hybrid automta 5

Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture
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Flow Invariant

Location=Mode
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Event

Guard

Update

Jump
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
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Inv

Flow

Init

Event from Σ

Jump
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Hybrid automata - Syntax

H=(Loc,Σ,Edge,X,Init,Inv,Flow,Jump), where:

‣ Loc is a finite set {l1,l2,...,ln} of (control locations) modeling control modes

‣ Σ is a finite set of event names

‣ Edge ⊆ Loc × Σ × Loc is a finite set of labelled edges modeling discrete 
changes between control modes

‣ X is a finite set {x1,x2,...,xm} of real-valued variables.
- We write  X‧={x‧1,x‧2,...,x‧m} for the dotted variables and
- X’= {x’1,x’2,...,x’m} for the primed variables

‣ Init(X), Inv(X), and Flow(X,X‧) are predicates associated to locations

‣ Jump(X,X’) is a function that assigns a predicate to each labelled edge

Definition
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TTS of a HA

‣ Let H=(Loc,Σ,Edge,X,Init,Inv,Flow,Jump) be a HA. 

‣ Its associated Timed Transition System 
⟦H⟧=(S,S0,Σ,→) is defined as follows:

‣ S is the set of pairs (l,v) where l∈Loc and v∈⟦Inv(l)⟧;
‣ S0 is the subset of pairs (l,v)∈S such that v∈⟦Init(l)⟧;
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Timed transition system of a HA

Transition relation
σ

δ
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Timed transition system of a HA

‣ discrete steps: 
for each edge e=(l,σ,l’)∈E,  we have (l,v)→σ(l’,v’) 
     if (l,v)∈S, (l’,v’)∈S and (v,v’)∈⟦Jump(e)⟧;

Transition relation
σ

δ
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Timed transition system of a HA

‣ discrete steps: 
for each edge e=(l,σ,l’)∈E,  we have (l,v)→σ(l’,v’) 
     if (l,v)∈S, (l’,v’)∈S and (v,v’)∈⟦Jump(e)⟧;

‣ continuous steps: for each δ∈ℝ≥0, we have (l,v)→δ(l’,v’) 
if (l,v)∈S, (l’,v’)∈S, l=l’, 
and there exists a differentiable function f:[0,δ]→ℝm,  
with derivative f‧(0,δ)→ℝm 
such that :
   1) f(0)=v, 
   2) f(δ)=v’ and 
   3)for all ε∈(0,δ), both 

Transition relation
σ

δ
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Timed transition system of a HA

‣ discrete steps: 
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σ

δ
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Timed transition system of a HA

‣ discrete steps: 
for each edge e=(l,σ,l’)∈E,  we have (l,v)→σ(l’,v’) 
     if (l,v)∈S, (l’,v’)∈S and (v,v’)∈⟦Jump(e)⟧;

‣ continuous steps: for each δ∈ℝ≥0, we have (l,v)→δ(l’,v’) 
if (l,v)∈S, (l’,v’)∈S, l=l’, 
and there exists a differentiable function f:[0,δ]→ℝm,  
with derivative f‧(0,δ)→ℝm 
such that :
   1) f(0)=v, 
   2) f(δ)=v’ and 
   3)for all ε∈(0,δ), both 

‣ f(ε)∈⟦Inv(l)⟧ and 
‣ (f(ε), f‧(ε))∈⟦Flow(l)⟧.

Transition relation
σ

δ
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Reachability

‣ Let PathF(S0)=set of finite paths starting from a state in S0

‣ Let T=(S,S0,Σ,→) be a TTS
Let λ=s0τ0s1τ1...sn ∈ PathF(T) 
State(λ) denotes the set of states that appear along λ 

‣ We say that a path λ reaches a state s if s ∈ State(λ)

‣ We say that s is reachable in T if s∈∪λ∈PathF(T) State(λ)

‣ Reach(T) denotes the set of states reachable in T
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‣ A set of state R⊆S is called a region. 

‣ A region R is reachable in T iff R∩Reach(T)≠∅.

‣ The rechability problem associated to a TTS T and a region R 
asks if R∩Reach(T)≠∅.

‣ The safety problem associated to a TTS T and a region R 
asks if Reach(T)⊆R.

‣ Those two problems are dual in the following formal sense: 

Let R be a region and R’=S\R.
 
                  Reach(T)⊆R iff R’∩Reach(T)=∅.

Safety and reachability
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Classes of
Hybrid Automata
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Classes of HA

Linear HA

-Linear flow constraints: 
Lin(X•),  ex: x•=y•+3

-Linear guards and updates:
Lin(X)→Lin(X,X’), 
ex: x+y<1 → x’:=y+2
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Classes of HA

Linear HA

-Linear flow constraints: 
Lin(X•),  ex: x•=y•+3

-Linear guards and updates:
Lin(X)→Lin(X,X’), 
ex: x+y<1 → x’:=y+2

Rectangular HA

-Rectangular flow constraints:
Rect(X•), ex: x•∈[1,2]∧y•∈[2,5]

-Rectangular guards-updates:
Rect(X)→Rect(X’)
ex: x∈[2,5]→x’∈[5,7]
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Classes of HA

Linear HA

-Linear flow constraints: 
Lin(X•),  ex: x•=y•+3

-Linear guards and updates:
Lin(X)→Lin(X,X’), 
ex: x+y<1 → x’:=y+2

Rectangular HA

-Rectangular flow constraints:
Rect(X•), ex: x•∈[1,2]∧y•∈[2,5]

-Rectangular guards-updates:
Rect(X)→Rect(X’)
ex: x∈[2,5]→x’∈[5,7]

O-minimal HA

-Use of O-minimal theory

-Strong resets: all variables are 
reset during any mode change

Affine HA

-Affine flow constraints:
Aff(X,X•), ex: x•=2x+3y

-Linear guards and updates:
Lin(X)→Lin(X,X’), 
ex: x+y<1 → x’:=y+2
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Symbolic
Semi-Algorithm
for RHA/LHA
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Effective procedure for Post in RHA
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Effective procedure for Post in RHA

‣ A linear term over X is a linear combination of the variables in X with 
integer coefficients.  

ex : 3x+2y-1.

‣ A linear formula over X is a boolean combination of inequalities 
between linear terms over X.

ex : 3x+2y-1≥0 ∧ y≥5.

‣ Given a linear formula ψ, we write ⟦ψ⟧ for the set of valuations v such 
that v ⊨ ψ.
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‣ Linear formulas + quantifiers
=T(ℝ,0,1,+,≤).
=The theory of reals with addition.  

This theory allows for quantifier elimination.

ex : “∀ y • y ≥ 5 → x+y ≥ 7” is equivalent to “x≥2”.

‣ A symbolic region of H is a finite set 

             { (l,ψl) | l ∈ Loc } where ⟦ψl⟧⊆⟦Inv(l)⟧.

Effective procedure for Post in RHA
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Given a location l∈Loc and a set of valuations V⊆[X→ℝ] such that V⊆Inv(l), 
the forward time closure, noted ⟨V⟩l↗ is the set of valuations that are 

reachable from some valuation v∈V by letting time pass. 

This set is defined as follows:

⟨V⟩l↗ is the set of valuation v’∈ [X→ℝ] such that 

∃v∈V • ∃t∈ℝ≥0 • ∀x∈X•
       v(x)+t×Inf(⟦Flow(l)⟧(x)) ≤ v’(x) ≤ v(x)+t×Sup(⟦Flow(l)⟧(x)) 
       ∧v’(x)∈⟦Inv(l)⟧.

After quantifier eliminations, we get a boolean combination of linear 
constraints.

Effective procedure for Post in RHA

Monday 3 October 2011



An example of time elapsing

x

y

Assume x•=[1,2] and y•=1

Φ={ (x,y) |    x∈[1,4] 
                ∧ y∈[1,6] 
                ∧ y≥-2x+5 ∧ ... }
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x

y

0 1 2

0

1
Assume x•=[1,2] and y•=1

An example of time elapsing
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x

y

Assume x•=[1,2] and y•=1

An example of time elapsing
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x

y

Assume x•=[1,2] and y•=1 ...

Time successors o
f Φ

An example of time elapsing
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x

y

Assume x•=[1,2] and y•=1 ...

Location invariant

An example of time elapsing
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x

y

Assume x•=[1,2] and y•=1

An example of time elapsing
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x

y

Assume a transition 
with guard x≤5 and 
reset of y to zero.

An example of time elapsing
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An example of discrete step

x

y

Assume a transition 
with guard x≤5 and 
reset of y to zero.
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Assume a transition 
with guard x≤5 and 
reset of y to zero.

An example of discrete step
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x

y

Assume a transition 
with guard x≤5 and 
reset of y to zero.

All those operatio
ns boil down to 

polyhedra m
anipulations

An example of discrete step
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discrete transition (linear 
transformation)

Continuous evolution (time 

passing) 

Forward reachability analysis
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Initial states 
A

Bad states
E

?

Forward reachability analysis
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A

E

A ∪ post(A)

Forward reachability analysis
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A

E

A ∪ post(A) ∪ post2(A)

Forward reachability analysis
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Error
(or parameter

values that lead 
to an error)

A

E

Forward reachability analysis
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A

E

Forward reachability analysis

Correct
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A

E

Forward reachability analysis

Correct

Implemented in HyTech and PhaVer
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Decidability/
undecidability
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Undecidability

Theorem. 

The reachability problem for rectangular hybrid automata is undecidable.

This is already the case for stopwatch automata (x•=0/1).

Proof (sketch). By simulation of two-counter machines for which the 
halting problem is undecidable.

To simulate a 2-CM M, we use a RHA with 3 continuous variables.

Let us consider the instruction j: c1:=c1+1; goto k;
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Undecidability

Theorem. 

The reachability problem for rectangular hybrid automata is undecidable.

This is already the case for stopwatch automata (x•=0/1).

Proof (sketch). By simulation of two-counter machines for which the 
halting problem is undecidable.

To simulate a 2-CM M, we use a RHA with 3 continuous variables.

Let us consider the instruction j: c1:=c1+1; goto k;

j
x1‧=1
x2‧=0
z‧=1

z’=0
assume 

v(x1)=val(c1)
v(x2)=val(c2)

k
...

z=1 ∧ z’=0
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Initialized RHA

‣ A RHA is initialized, if for all discrete jumps (l1,σ,l2), and 
for all variables x∈X:

-either the flow constraints on x in l1 and l2 are identical
-or variable x is updated during the discrete jump from l1 to l2 
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Initialized RHA

j
x1‧=1

x2‧=(0,2)
z‧=0

k
x1‧=1
x2‧=2
z‧=0

z=1 ∧ z’=0

is not initialized

‣ A RHA is initialized, if for all discrete jumps (l1,σ,l2), and 
for all variables x∈X:

-either the flow constraints on x in l1 and l2 are identical
-or variable x is updated during the discrete jump from l1 to l2 
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Initialized RHA

j
x1‧=1

x2‧=(0,2)
z‧=0

k
x1‧=1

x2‧=(0,2)
z‧=0

z=1 ∧ z’=0

is initialized

‣ A RHA is initialized, if for all discrete jumps (l1,σ,l2), and 
for all variables x∈X:

-either the flow constraints on x in l1 and l2 are identical
-or variable x is updated during the discrete jump from l1 to l2 
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Initialized RHA

j
x1‧=1

x2‧=(0,2)
z‧=0

k
x1‧=1
x2‧=2
z‧=0

z=1 ∧ z’=0 ∧ x’ ∈ [2,3]

is initialized

‣ A RHA is initialized, if for all discrete jumps (l1,σ,l2), and 
for all variables x∈X:

-either the flow constraints on x in l1 and l2 are identical
-or variable x is updated during the discrete jump from l1 to l2 
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Initialized RHA

Theorem[HPV96]. The reachability problem (and LTL model-
checking problem) is decidable for the class of initialized 
rectangular automata.

‣ Note that Initialized RHA generalizes timed automata

‣ Existence of finite similarity quotient (init-RHA) and bisimilarity 
quotient (TA)

‣ A RHA is initialized, if for all discrete jumps (l1,σ,l2), and 
for all variables x∈X:

-either the flow constraints on x in l1 and l2 are identical
-or variable x is updated during the discrete jump from l1 to l2 
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Decidability/Undecidability

Reach

Timed automata ☝

Initialized RHA ☝

RHA ☟ (Stopwatch)

LHA ☟

Affine HA ☟

O-Minimal HA ☝
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Beyong RHA/LHA
Approximate 
Reachability
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Rectangular approximations

‣ Approximate complex dynamics with rectangular dynamics

‣ ... use PhaVer or Hytech for analysis

‣ Rectangular approximations are often precise enough

‣ For each control mode we partition the space into rectangular regions

‣ Within each region, the flow field is over-approximated using 
rectangular flows 

‣ Those approximations can often be obtained automatically: 
for affine HA → solve an LP problem

‣ Approximations can be made arbitrarily precise by approximating 
over suitably small regions of the state space
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An example

An introduction to hybrid automata 509

least the trajectories defined by the original automaton. We can repeat this
schema for each location of the original automaton. In this way we obtain
a rectangular hybrid automaton that overapproximates the behavior of our
original model in the sense that any trajectory of the original automaton can
be mimicked by the approximating automaton (and so is a trajectory of the
approximating automaton). In this introduction the notion of approximations
is left informal; it can be formalized using notions like simulations [43], and
we refer the interested reader to [30] for a correctness proof. The automaton
obtained by this schema is given in Fig. 9 and is noted RectTank.

Fig. 9. Rectangular automaton RectTank for the tank

Let us now analyze the behaviors of our system approximated as a product
of rectangular hybrid automata. This model can be analyzed using the tool
HyTech [29]. HyTech is a model-checking tool for the reachability analysis
of linear hybrid automata, a class of hybrid automata that subsumes the class
of rectangular hybrid automata. HyTech allows us to describe each compo-
nent of the system directly as a rectangular automaton in a textual syntax and
to formalize reachability questions using a simple (and yet powerful) script
language.

For our analysis of the tank system, we consider the product of each
of the three monitors Monii, 1 ≤ i ≤ 3, of Fig. 7(c), with the system
RectTank⊗Burner⊗Thermo⊗ Controller. Again, it is easy to show that since
RectTank overapproximates the behaviors of Tank, and if “Bad” locations are
not reachable in RectTank⊗Burner⊗Thermo⊗Controller⊗Monii then “Bad” is
also not reachable in Tank⊗Burner⊗Thermo⊗Controller⊗Monii. This means
that if we can prove that a safety requirement is verified in the approximated
system, then it is also verified for the original system.

An introduction to hybrid automata 495

Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture

Maxx∈[20,100] K(h-x) = K(h-20) = 0.075(150-20) = 9.75 ≤10
Minx∈[20,100] K(h-x) = K(h-100) = 0.075(150-100) = 3.75 ≥ 3

These are LPs
Monday 3 October 2011



An example

An introduction to hybrid automata 509

least the trajectories defined by the original automaton. We can repeat this
schema for each location of the original automaton. In this way we obtain
a rectangular hybrid automaton that overapproximates the behavior of our
original model in the sense that any trajectory of the original automaton can
be mimicked by the approximating automaton (and so is a trajectory of the
approximating automaton). In this introduction the notion of approximations
is left informal; it can be formalized using notions like simulations [43], and
we refer the interested reader to [30] for a correctness proof. The automaton
obtained by this schema is given in Fig. 9 and is noted RectTank.

Fig. 9. Rectangular automaton RectTank for the tank

Let us now analyze the behaviors of our system approximated as a product
of rectangular hybrid automata. This model can be analyzed using the tool
HyTech [29]. HyTech is a model-checking tool for the reachability analysis
of linear hybrid automata, a class of hybrid automata that subsumes the class
of rectangular hybrid automata. HyTech allows us to describe each compo-
nent of the system directly as a rectangular automaton in a textual syntax and
to formalize reachability questions using a simple (and yet powerful) script
language.

For our analysis of the tank system, we consider the product of each
of the three monitors Monii, 1 ≤ i ≤ 3, of Fig. 7(c), with the system
RectTank⊗Burner⊗Thermo⊗ Controller. Again, it is easy to show that since
RectTank overapproximates the behaviors of Tank, and if “Bad” locations are
not reachable in RectTank⊗Burner⊗Thermo⊗Controller⊗Monii then “Bad” is
also not reachable in Tank⊗Burner⊗Thermo⊗Controller⊗Monii. This means
that if we can prove that a safety requirement is verified in the approximated
system, then it is also verified for the original system.

‣ Applying this computation for each location, we get the following 
rectangular approximation of the tank:
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Over-approximations and correctness

‣ Let us note RectOver(H) the rectangular over-approximation obtained 
using the previous method;

‣ RectOver(H) is a over-approximaiton of the original system in the 
following formal sense:

       PathF(⟦H⟧) ⊆ PathF(⟦RectOver(H)⟧)

‣ Transfert of correctness from overapproximations:

       if PathF(⟦RectOver(H)⟧)∩BadPaths=∅ 
            then PathF(⟦H⟧)∩BadPaths=∅
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‣ When over-approximating the behavior of a system, we face the 
possibility to get false negatives during verification;

‣ Indeed, the set of behaviors of the over-approximation is a 
superset of the behaviors of the original system...

‣ ...so if we have that 

        PathF(⟦RectOver(H)⟧)∩BadPaths≠∅ 

it is not nessarily the case that 

                    PathF(⟦H⟧)∩BadPaths≠∅

Over-approximations and correctness
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Candidate counter examples

‣ A path λ=s0τ0s1τ1...τn-1sn is an candidate counter example if 

• λ ∈ ⟦OverRect(H)⟧ ∩ BadPaths

‣ When facing a candidate counter example, we check if the counter 
example is realizable in the original model, so we ask:

• λ ∈? ⟦H⟧

This test is possible for larger class than rectangular automata, 
i.e. affine/polynomial hybrid automata.

‣ If λ∈⟦H⟧, then we have found a real counter example i.e., the a Bad path 
in the original HA H.
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Spurious counter-examples

‣ If λ∉⟦H⟧, then λ is a spurious counter example i.e.:

• λ ∈ ⟦OverRect(H)⟧ ∩ BadPaths

• λ ∉ ⟦H⟧

‣ In this case, we must refine OverRect(H) in order to eliminate the 
counter example.

‣ There is a large research effort in the CAV community on the so-called 
counter-example based abstraction refinement, and variants.
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Abstraction refinement

‣ In presence of spurious counter examples, we refine the  
rectangular approximation by splitting locations to decorate them 
with smaller rectangular regions.

An introduction to hybrid automata 509

least the trajectories defined by the original automaton. We can repeat this
schema for each location of the original automaton. In this way we obtain
a rectangular hybrid automaton that overapproximates the behavior of our
original model in the sense that any trajectory of the original automaton can
be mimicked by the approximating automaton (and so is a trajectory of the
approximating automaton). In this introduction the notion of approximations
is left informal; it can be formalized using notions like simulations [43], and
we refer the interested reader to [30] for a correctness proof. The automaton
obtained by this schema is given in Fig. 9 and is noted RectTank.

Fig. 9. Rectangular automaton RectTank for the tank

Let us now analyze the behaviors of our system approximated as a product
of rectangular hybrid automata. This model can be analyzed using the tool
HyTech [29]. HyTech is a model-checking tool for the reachability analysis
of linear hybrid automata, a class of hybrid automata that subsumes the class
of rectangular hybrid automata. HyTech allows us to describe each compo-
nent of the system directly as a rectangular automaton in a textual syntax and
to formalize reachability questions using a simple (and yet powerful) script
language.

For our analysis of the tank system, we consider the product of each
of the three monitors Monii, 1 ≤ i ≤ 3, of Fig. 7(c), with the system
RectTank⊗Burner⊗Thermo⊗ Controller. Again, it is easy to show that since
RectTank overapproximates the behaviors of Tank, and if “Bad” locations are
not reachable in RectTank⊗Burner⊗Thermo⊗Controller⊗Monii then “Bad” is
also not reachable in Tank⊗Burner⊗Thermo⊗Controller⊗Monii. This means
that if we can prove that a safety requirement is verified in the approximated
system, then it is also verified for the original system.
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Fig. 3. A hybrid automaton for the tank

location t4 models the behavior of the tank when the gas burner is OFF and
the temperature of the water is equal to 20 degrees.

The edge from location t1 to location t2 is crossed when the tempera-
ture of the water reaches 100 degrees. In that situation, the control of the
hybrid automaton cannot stay in location l1 without violating the invariant
20 ≤ x ≤ 100. The predicate x = 100 ensures that this edge can only be
crossed when the temperature has reached 100 degrees. Edge from location t1
to location t3 is crossed when the burner is turned off. In that case, the dy-
namics of the system changes instantaneously from ẋ = K(h−x) to ẋ = −Kx.
This edge can be crossed at any time when the control is in location t2. In
the sequel, we fix the value of K to be 0.075 and h to be 150.

2.2 Semantics

At any instant, the state of the hybrid system specifies a control location
and values for all real-valued variables. The state can change in two ways: (i)
by an instantaneous transition jump that changes possibly both the control
location and the values of some real-valued variables, or (ii) by a time delay
that changes only the values of the real-valued variables in a smooth manner
according to the flow and invariant of the current control location. To capture

An introduction to hybrid automta 21

Fig. 10. Refinement by location splitting

Fig. 11. Approximation of the dynamics by rectangles with rectangular regions

x’=x
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Example
An introduction to hybrid automata 511

Fig. 10. Refinement by location splitting

Fig. 11. Approximation of the dynamics by rectangles with rectangular regions

An introduction to hybrid automata 511

Fig. 10. Refinement by location splitting

Fig. 11. Approximation of the dynamics by rectangles with rectangular regions
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Time-bounded
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Time Bounded Reachability

(Goal,•)

≤T

(Init,0)

‣Given an LHA H=(X,Loc,Edges,Rates,Inv,Init)
‣ a location Goal∈Loc and 

‣ a time bound T∈ℕ
The time bounded reachability problem is to decide 
if ∃ρ=(Init,0)→(Goal,•) of H with duration(ρ)≤T.

Definition
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‣ This automaton is non-initialized, but

(I) non-negative rates
(II) diagonal free

‣ class RHA⊕ for which we show decidability of TBR

Time Bounded Reachability

Problem 1 (Time-bounded reachability problem) Given an LHAH = (X,Loc,Edges,
Rates, Inv, Init), a location Goal ∈ Loc and a time bound T ∈ N, the time-bounded
reachability problem is to decide whether there exists a finite run ρ = (Init,"0)

π
−→

(Goal, ·) ofH with duration (ρ) ≤ T.

In the following table, we summarize the known facts regarding decidability of
the reachability problem for LHA, along with the results on time-bounded reachability
that we prove in the rest of this paper. Note that decidability for initialized rectangular
hybrid automata (IHRA) follows directly from [7]. We show decidability for (non-
initialized) RHA that only have non-negative rates in Section 3. The undecidability of
the time-bounded reachability problem for RHA and LHA is not a consequence of the
known results from the literature and require new proofs that are given in Section 4.

HA classes Reachability Time-Bounded Reachability
LHA U [1] U (see Section 4)
RHA U [7] U (see Section 4)

non-negative rates RHA U [7] D (see Section 3)
IRHA D [7] D [7]

Example of time bounded reachability Let H be the hybrid automaton of Fig. 1
with the convention that the transition starting from #i and ending in #j is denoted
eij . Although not explicitly stated on the figure, we assume that all the locations are
equipped with the invariant (x ≤ 1)∧(y ≤ 1). As this automaton uses only rectangular
constraints and positive rates, it is in the class for which we show the decidability of
the time-bounded reachability problem (see Section 3). Note that it is non-initialized
as, for example, variable y is not reset from location #0 to location #1 while its rate is
changing, and it is singular, diagonal-free, and multirate.

ẋ=5

ẏ=2

"0"1

"2

"3

"4

ẋ=2

ẏ=5

ẋ=1

ẏ=17

ẋ=10

ẏ=7

ẋ=0

ẏ=0

x=1

x:=0

y=1

y:=0

x=1

x:=0

x=1
x:=0

y≤1;y:=0

x=3
x:=0

x=1

x:=0

Figure 1: A singular, diagonal-free, multirate hybrid automaton.

Assume we want to reach location #4 from (#0, 0, 0) within one time unit. One
clearly see that the duration of any run starting from #0 and crossing #2 will exceed
one time unit. An other possibility would be to directly go from #0 to #3. In this case,
when reaching location #3, after crossing e03, the value of the variable x (resp. y) is
0 (resp. 2

5 ). Thus, in order to cross e34, one should wait
1
10 time units, if we do so,

5

+ x≤1∧y≤1
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Time Bounded Reachability

Problem 1 (Time-bounded reachability problem) Given an LHAH = (X,Loc,Edges,
Rates, Inv, Init), a location Goal ∈ Loc and a time bound T ∈ N, the time-bounded
reachability problem is to decide whether there exists a finite run ρ = (Init,"0)

π
−→

(Goal, ·) ofH with duration (ρ) ≤ T.

In the following table, we summarize the known facts regarding decidability of
the reachability problem for LHA, along with the results on time-bounded reachability
that we prove in the rest of this paper. Note that decidability for initialized rectangular
hybrid automata (IHRA) follows directly from [7]. We show decidability for (non-
initialized) RHA that only have non-negative rates in Section 3. The undecidability of
the time-bounded reachability problem for RHA and LHA is not a consequence of the
known results from the literature and require new proofs that are given in Section 4.

HA classes Reachability Time-Bounded Reachability
LHA U [1] U (see Section 4)
RHA U [7] U (see Section 4)

non-negative rates RHA U [7] D (see Section 3)
IRHA D [7] D [7]

Example of time bounded reachability Let H be the hybrid automaton of Fig. 1
with the convention that the transition starting from #i and ending in #j is denoted
eij . Although not explicitly stated on the figure, we assume that all the locations are
equipped with the invariant (x ≤ 1)∧(y ≤ 1). As this automaton uses only rectangular
constraints and positive rates, it is in the class for which we show the decidability of
the time-bounded reachability problem (see Section 3). Note that it is non-initialized
as, for example, variable y is not reset from location #0 to location #1 while its rate is
changing, and it is singular, diagonal-free, and multirate.

ẋ=5

ẏ=2

"0"1

"2

"3

"4

ẋ=2

ẏ=5

ẋ=1

ẏ=17

ẋ=10

ẏ=7

ẋ=0

ẏ=0

x=1

x:=0

y=1

y:=0

x=1

x:=0

x=1
x:=0

y≤1;y:=0

x=3
x:=0

x=1

x:=0

Figure 1: A singular, diagonal-free, multirate hybrid automaton.

Assume we want to reach location #4 from (#0, 0, 0) within one time unit. One
clearly see that the duration of any run starting from #0 and crossing #2 will exceed
one time unit. An other possibility would be to directly go from #0 to #3. In this case,
when reaching location #3, after crossing e03, the value of the variable x (resp. y) is
0 (resp. 2

5 ). Thus, in order to cross e34, one should wait
1
10 time units, if we do so,

5

+ Invariant
x≤1∧y≤1

Goal
T≤1

Reachability problem over bounded time - An example

ẋ=5

ẏ=2

�0�1

�2

�3

�4

ẋ=2

ẏ=5

ẋ=1

ẏ=17

ẋ=10

ẏ=7

ẋ=0

ẏ=0

x=1

x :=0

y=1

y :=0

x=1

x ,y :=
0

x=1
x :=0

y�1;y :=0

x=1
x :=0

x=1;y�1

x :=0

Can reach �4 from (�0, 0, 0) within 1 time unit ? Yes

(�0,0,0)
1
5 ,e01−−−→(�1,0, 25)

3
25 ,e10−−−→(�0, 6

25 ,0)
17
125 ,e03−−−−→(�3,0, 34

125)
1
10 ,e34−−−→(�4,0, 243250).

1

t

x

y

1
5

8
25

57
125

139
250
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Additional hypothesis (wlog)

‣ RHA⊕:

‣  non-negative rates
‣  diagonal free

‣ All variables are bounded by 1

‣ (L,2.1,4.7) is encoded by ((L,2,4),0.1,0.7)
‣ Only guards of the form x<1, x=1
‣ As soon as a clock reaches value 1, it is reset 

Monday 3 October 2011



Bounding the number of transitions

Our goal:

‣ Given ρ an execution of H reaching Goal from (L0,x0) within T time units. 

‣ We want to build an execution ρ′ of H such that :

-ρ′ reaches Goal from (L0,x0) within T time units 
-the number of transitions of ρ′ is bounded by a constant depending 
only of H and T

Solution:

① Simple observation: bounding the number of equalities

② Bounded witness between equalities
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Bounding number of equalities

Proof:
‣Use bounded time hypothesis
‣False for transitions not guarded by an equality

≤T
x:=0 x=1

≥1/rmax

‣ Let H be an RHA⊕ with a set of variables X

‣ Let ρ be a T-time bounded run of H 

‣ Then ρ contains at most |X|•rmax•T transitions guarded by an equality 

Proposition
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x=1 y=1

Bounding between two equalities

...

rmax+1
1

-no equality
-bounded time

→ shorten witness
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Bounding between two equalities

Key idea : The contraction operation

ρ[1:j−1] ρ[j :k] ρ[k+1:j �−1] ρ[j �:k �] ρ[k �+1:n]

ρ=
� � � �

(t1,e1) (tj ,ej ) (tk ,ek ) (tj� ,ej� ) (tk� ,ek� )

with ρ[j : k] = ρ[j � : k �].

ρ[1:j−1] built from

ρ[j :k] and ρ[j �:k �]

ρ[k+1:j �−1] ρ[k �+1:n]

Cnt(ρ)=
� � �

(t1,e1) (tj+tj� ,ej ) (tk+tk� ,ek )

if big enough:
cycles !
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The contraction operation - A concrete example

�0�1 �2

ẋ=1ẋ=2 ẋ=3

x�1
x>0

x�1

x�1

x :=0

x>0

ρ = (�0,0)
.1,e00−−−→(�0,.1)

.3,e01−−−→(�1,.4)
.1,e10−−−→(�0,.6)

.2,e00−−−→(�0,.8)
.1,e01−−−→(�1,.9)

Cnt(ρ) = (�0,0)
.1+.2,e00−−−−−→(�0,.3)

.3,e02−−−→(�1,.6)
.1,e20−−−→(�0,.8)

.1,e01−−−→(�1,.9)

Advantages

The new execution is shorter (in term of transitions).

The value of the variables are preserved.

Bounding between two equalities
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The contraction operation - Problem I

�0�1 �2

ẋ=1ẋ=2 ẋ=3

x�1
x>0

x�1

x�1

x :=0

x>0

ρ = (�0,0)
.1,e00−−−→(�0,.1)

.3,e02−−−→(�2,0)
.1,e20−−−→(�0,.3)

.2,e00−−−→(�0,.5)
.4,e01−−−→(�1,.9)

Cnt(ρ) = (�0,0)
.1+.2,e00−−−−−→(�0,.3)

.3,e02−−−→(�2,0)
.1,e20−−−→(�0,.3)

.4,e01−−−→(�1,.7)

The value of the variables are not necessarily preserved...

Solution
Do not contract transitions occurring before and after the last reset.

Bounding between two equalities

x:=0
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The contraction operation - Problem II

�0�1 �2

ẋ=1ẋ=2 ẋ=3

x�1
x>0

x�1

x�1

x :=0

x>0

ρ = (�0,0)
.7,e00−−−→(�0,.1)

.3,e01−−−→(�1,.4)
.1,e10−−−→(�0,.6)

.2,e00−−−→(�0,.8)
.1,e01−−−→(�1,.9)

Cnt(ρ) = (�0,0)
.7+.2,e00−−−−−→(�0,.9)

.3,−→(�1,1.2)

Cnt (ρ) is not necessarily a proper execution...

Solution
Do not contract transitions occurring before and after the first reset.

Ensure that the time spent along an execution is short enough.

Bounding between two equalities

x:=0
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Building a bounded witness

Ultimate Goal

Given ρ an execution of H reaching �1 from (�0, x0) within T time units.
We want to build ρ� such that :

an execution of H reaching �1 from (�0, x0) within T time units,

the number of transitions of ρ� is bounded by a constant depending
only of H and T .

Step 1 : Time-slicing
We can slice ρ is pieces whose duration is at most 1

Rmax
.

At most Rmax · T pieces.

Step 2 : First and Last reset-slicing
We can slice ρ according to the first an last resets of each clock.

At most 3 · |X | pieces.

Bounding between two equalities
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Building a bounded witness (continued)

Step 3 : Application of the contraction :

ρ̃

ρ1 (ti1 ,ei1 )
ρ2 (ti2 ,ei2 )

ρk+1(tik ,eik )

˜̃ρ

Cnt∗(ρ1)

(ti1 ,ei1 )

Cnt∗(ρ2)

(ti2 ,ei2 )

Cnt∗(ρk+1)

(tik ,eik )

˜̃ρ is a proper execution of H.

The variables have the same value at the end of ρ̃ and ˜̃ρ.

The number of transitions in ˜̃ρ is bounded by a constant depending
only of H.

Bounding between two equalities
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The contraction operation

ρ[1:j−1] ρ[j :k] ρ[k+1:j �−1] ρ[j �:k �] ρ[k �+1:n]

ρ=
� � � �

(t1,e1) (tj ,ej ) (tk ,ek ) (tj� ,ej� ) (tk� ,ek� )

with ρ[j : k] = ρ[j � : k �].

ρ[1:j−1] built from

ρ[j :k] and ρ[j �:k �]

ρ[k+1:j �−1] ρ[k �+1:n]

Cnt(ρ)=
� � �

(t1,e1) (tj+tj� ,ej ) (tk+tk� ,ek )

|Cnt∗ (ρ)| ≤ |Loc| · (2(|Edges|+1) + 1),

where Cnt∗ (ρ) is the fixed point obtained by iterating Cnt (·) to ρ.

Bounding between two equalities
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Decision procedure for TBR

A Goal location is reachable in RHA⊕ H within T time units 
iff 

it is reachable by a run ρ of size bounded by K(H,T)∈ℕ.

Theorem

Time bounded reachability can be reduced to the satisfiability of a 
formula in the first order theory of the reals encoding the 

existence of runs of length at most K(H,T) that reaches Goal.

Corollary
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Decision procedure for TBR

A Goal location is reachable in RHA⊕ H within T time units 
iff 

it is reachable by a run ρ of size bounded by K(H,T)∈ℕ.

Theorem

Time bounded reachability can be reduced to the satisfiability of a 
formula in the first order theory of the reals encoding the 

existence of runs of length at most K(H,T) that reaches Goal.

Corollary

Not based on a finite similarity
 quotient 

(as it 
is usually the case)
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Beyond RHA⊕

‣ Negative rates lead to undecidability

‣ Diagonal constraints lead to undecidability
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Decidability frontier

Reach Time-bounded 
Reach

Timed automata ☝ ☝
Initialized RHA ☝ ☝

RHA⊕ ☟(Stopwatch) ☝
RHA ☟ ☟(neg. rates or diag.)

LHA ☟ ☟

Affine HA ☟ ☟

O-Minimal HA ☝ ?
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Conclusion

‣ Reachability analysis of hybrid automata have proven useful 
(embedded systems-protocols-biological systems-etc.)

‣ PhaVer and HyTech implements symbolic semi-algorithm for LHA-RHA

‣ PhaVer implements rectangular approximations of affine HA

Details: Laurent Doyen, Tom Henzinger, Jean-François Raskin. Automatic 
Rectangular Refinement of Affine Hybrid Systems. In FORMATS'05, 
Lecture Notes in Computer Science 3829, pp. 144--161,Springer-Verlag, 2005.

‣ Time-bounded reachability is decidable for RHA⊕ (⊇stopwatch HA)

Details: Thomas Brihaye, Gilles Geeraerts, Laurent Doyen, Joel Ouaknine, Jean-
François Raskin and James Worrell. On reachability for Hybrid Automata 
over Bounded Time. In ICALP'11, LNCS 6756, Springer, pp. 416-427, 2011. 
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