Reachability Problems for Hybrid Automata

J-F Raskin Université Libre de Bruxelles

based on joint works with T. Brihaye, L. Doyen, G. Geeraerts, T. Henzinger, J. Ouaknine, J. Worrell

- Motivations: reactive embedded and hybrid systems
- Classes of hybrid automata
- **Symbolic semi-**algorithm for reachability
- Reachability problem: decidability frontier
- Approximate reachability
- Time-bounded reachability

Reactive and hybrid systems

Reactive systems maintain a continuous interaction with their environment

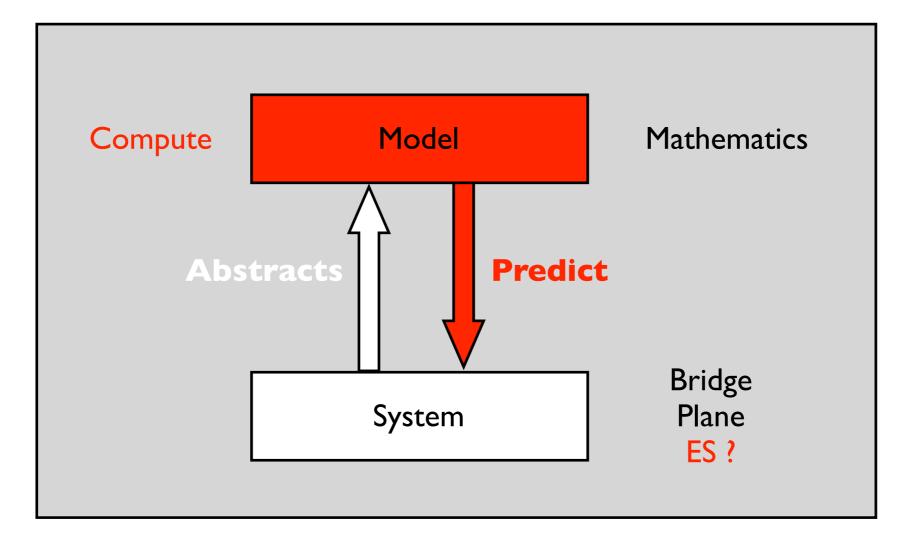
- non-terminating
- respect/enforce real-time properties
- cope with concurrency
- embedded in complex-continuous-critical env

→ difficult to develop correctly

300 horses power 100 processors

Is the software correct ?

How to cope with complexity



Hybrid automata

Mixing discrete-continuous evolutions

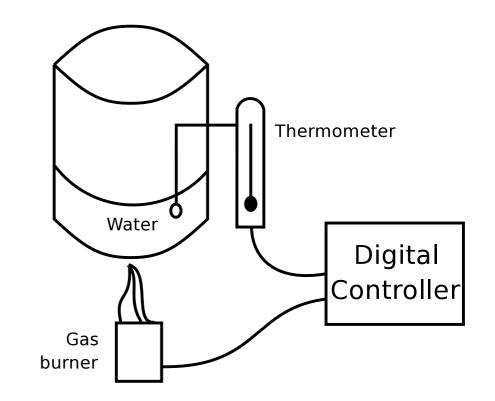
- Finite state automata to model (discrete) reactive systems
- Differential equations to model continuous environments
- Hybrid automata: combine the two
 - finite automata + continuous variables
 - discrete transitions + differential equations

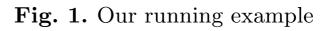
Example

- Three environment components:
 - -A tank containing water;
 - -A gas burner that can be turn on or off;
 - -A digital thermometer that monitors the temperature within the tank.

and a controller

We want to design a controller strategy that maintains the temperature within an interval of safe temperatures.





Continuous part

Behavior of the temperature in the tank

-Mode OFF: $\mathbf{x}(\mathbf{t}) = \mathbf{I} e^{-\mathbf{K}\mathbf{t}}$, i.e. $\mathbf{x} = -\mathbf{K}\mathbf{x}$ -Mode ON: $\mathbf{x}(\mathbf{t}) = \mathbf{I} e^{-\mathbf{K}\mathbf{t}} + \mathbf{h} (\mathbf{I} - e^{-\mathbf{K}\mathbf{t}})$, i.e. $\mathbf{x} = \mathbf{K}(\mathbf{h} - \mathbf{x})$

I=initial temperature of the water K=constant (nature of the tank) h=constant (power gas burner) t=time.

ON and OFF=modes of the tank evolution

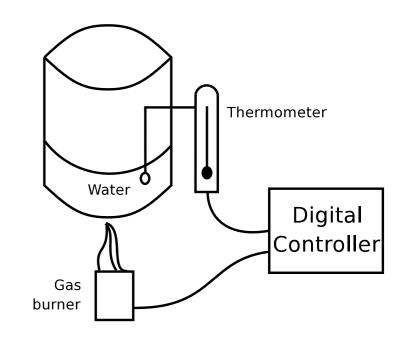


Fig. 1. Our running example

Evolution of the temperature

Mode changes
 Continuous
 Evolutions

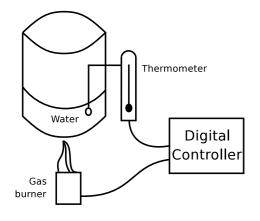


Fig. 1. Our running example

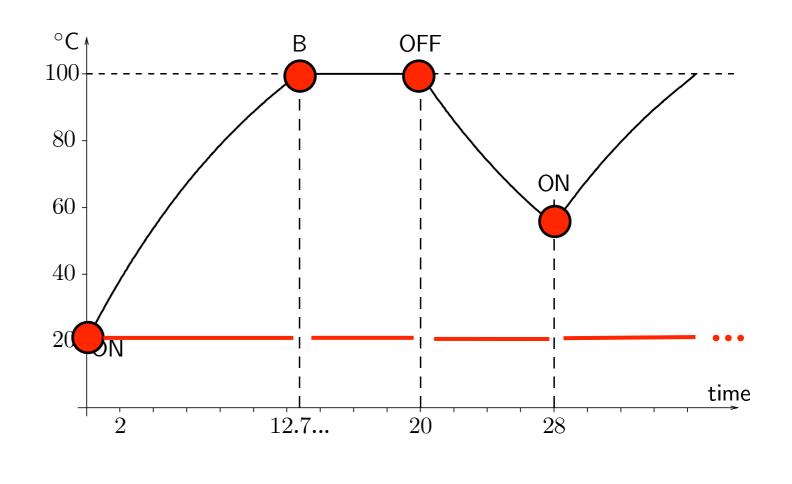
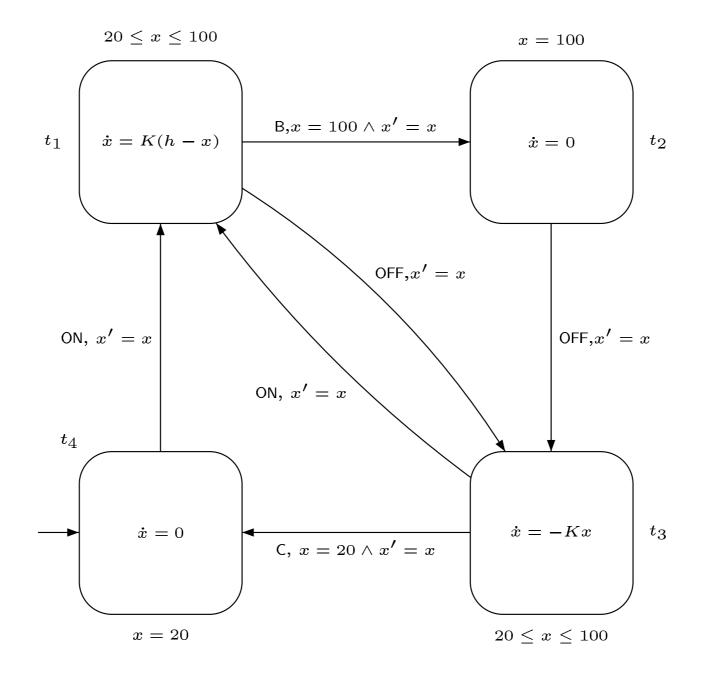
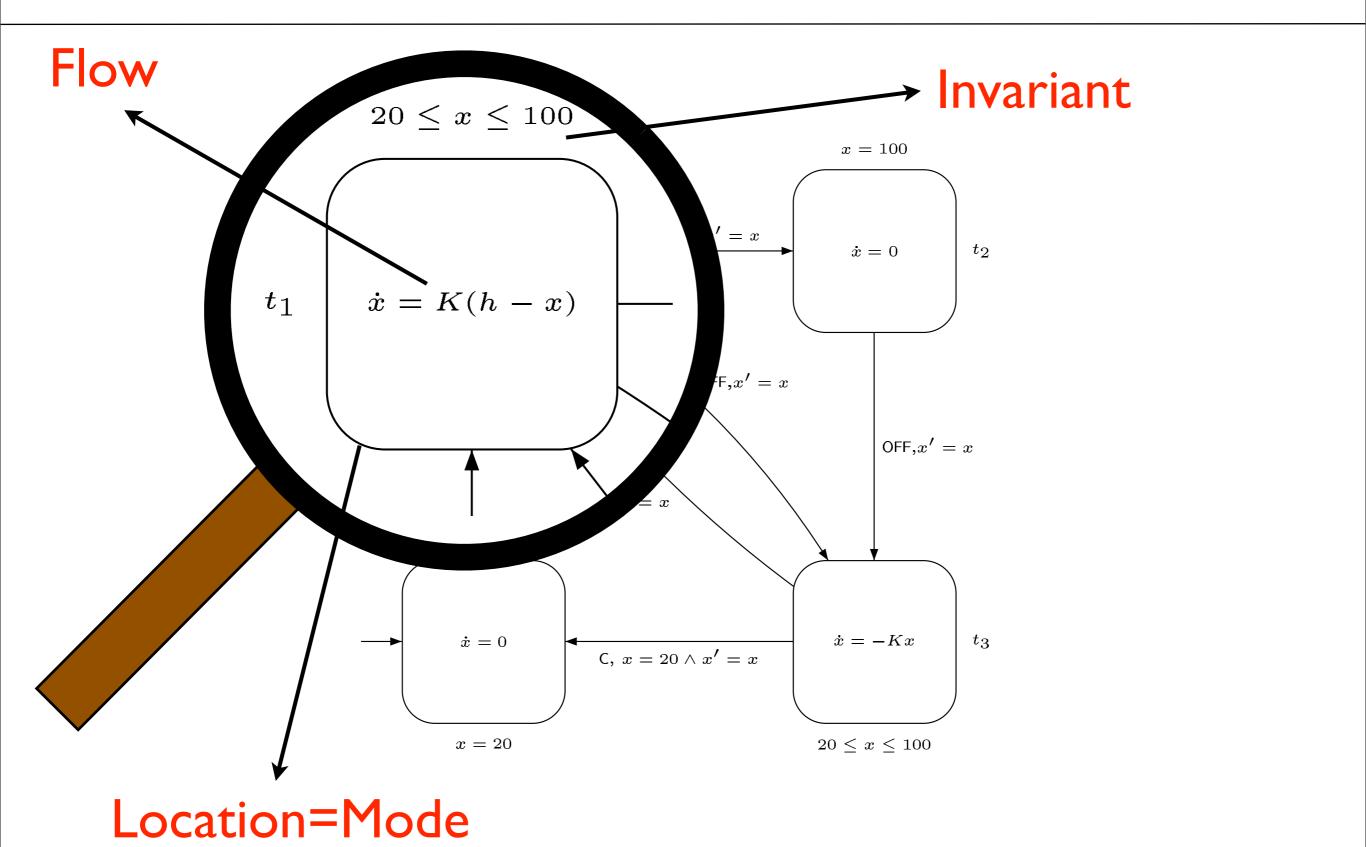
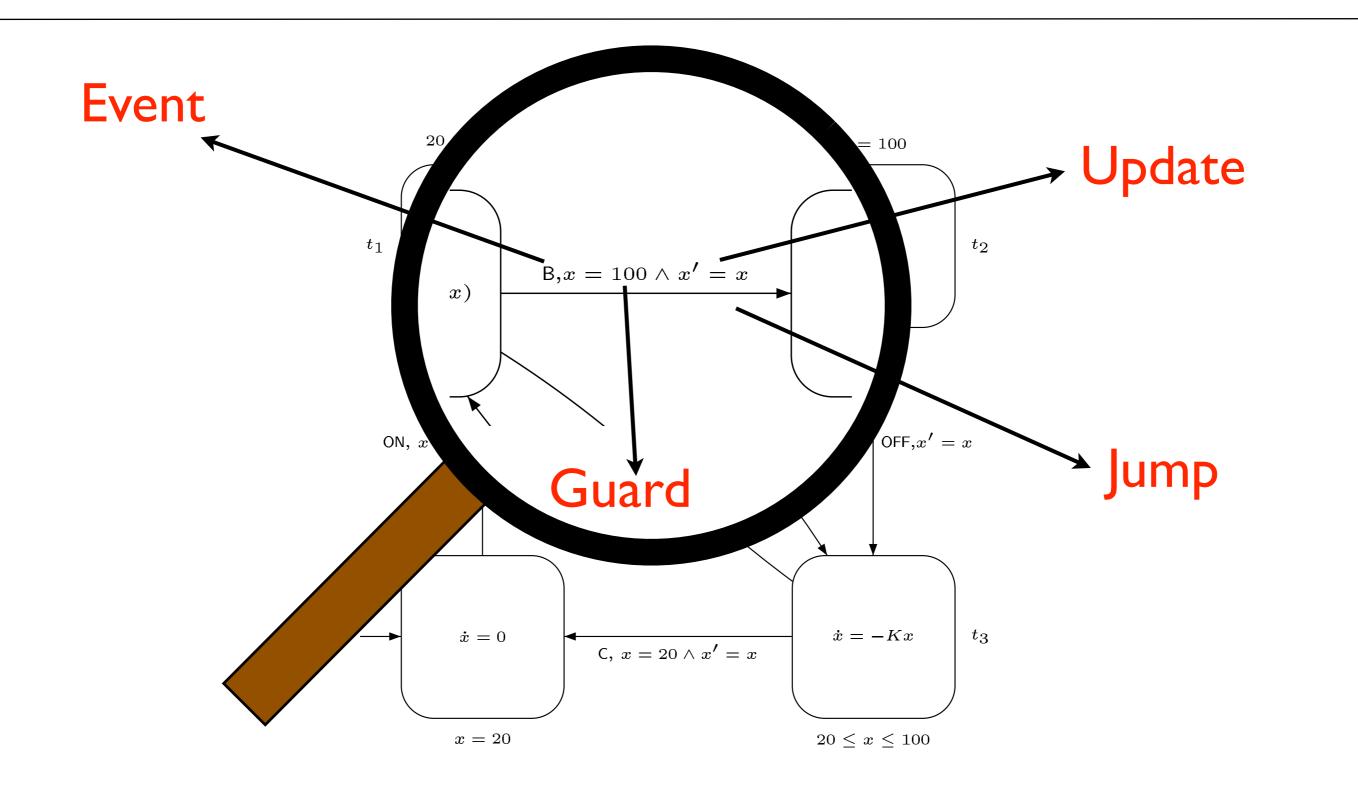


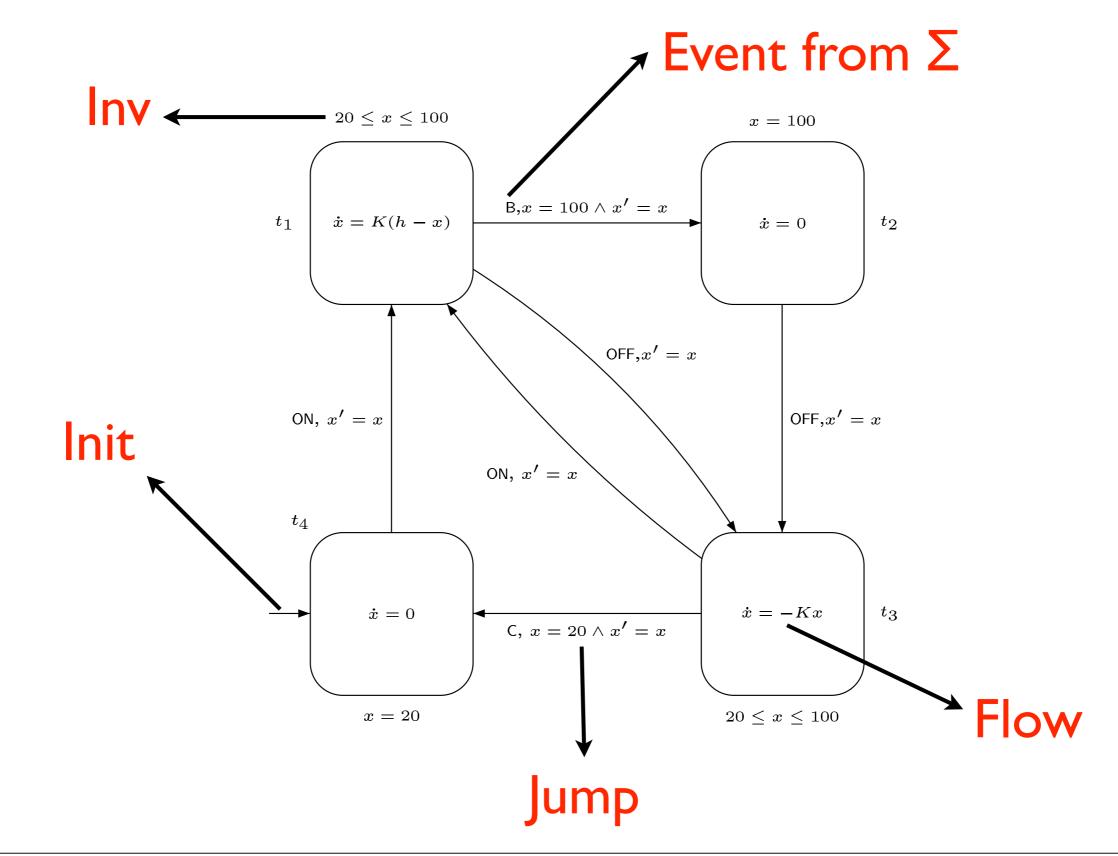
Fig. 2. One possible behavior of the tank

Evolution of the temp. is **not** purely continuous. It depends on the mode **ON** and **OFF** for example, and that it is below 100° or not.









Hybrid automata - Syntax

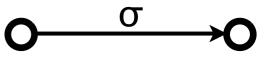
Definition

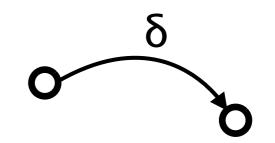
- H=(Loc,Σ,Edge,X,Init,Inv,Flow,Jump), where:
 - Loc is a finite set $\{I_1, I_2, ..., I_n\}$ of (control locations) modeling control modes
 - Σ is a finite set of event names
 - Edge ⊆ Loc × Σ × Loc is a finite set of labelled edges modeling discrete changes between control modes
 - X is a finite set $\{x_1, x_2, ..., x_m\}$ of real-valued variables.
 - We write $X^{\cdot}=\{x_{1}^{\cdot},x_{2}^{\cdot},...,x_{m}^{\cdot}\}$ for the dotted variables and
 - X'= $\{x'_1, x'_2, ..., x'_m\}$ for the primed variables
 - Init(X), Inv(X), and Flow(X,X⁻) are predicates associated to locations
 - Jump(X,X') is a function that assigns a predicate to each labelled edge

TTS of a HA

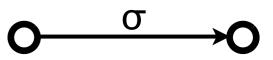
- Let $H=(Loc,\Sigma,Edge,X,Init,Inv,Flow,Jump)$ be a HA.
- Its associated Timed Transition System $[H]=(S,S_0,Σ,→) \text{ is defined as follows:}$
 - S is the set of pairs (I,v) where I∈Loc and v∈[[Inv(I)]];
 - S_0 is the subset of pairs $(I,v) \in S$ such that $v \in [[Init(I)]]$;

Transition relation



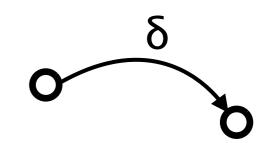


Transition relation



• discrete steps:

for each edge $e=(I,\sigma,I')\in E$, we have $(I,v)\rightarrow_{\sigma}(I',v')$ if $(I,v)\in S$, $(I',v')\in S$ and $(v,v')\in [Jump(e)]$;



Transition relation

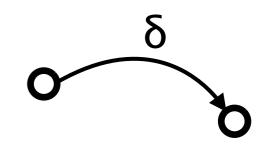
discrete steps:

for each edge $e=(I,\sigma,I')\in E$, we have $(I,v)\rightarrow_{\sigma}(I',v')$ if $(I,v)\in S$, $(I',v')\in S$ and $(v,v')\in [Jump(e)]$;

► continuous steps: for each $\delta \in \mathbb{R} \ge 0$, we have $(I,v) \rightarrow \delta(I',v')$ if $(I,v) \in S$, $(I',v') \in S$, I=I',

and there exists a differentiable function $f:[0,\delta] \rightarrow \mathbb{R}^m$, with derivative $f'(0,\delta) \rightarrow \mathbb{R}^m$ such that :

I) f(0)=v, 2) $f(\delta)=v'$ and 3) for all $\epsilon \in (0,\delta)$, both



σ

Transition relation

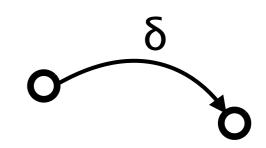
discrete steps:

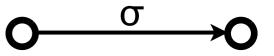
for each edge $e=(I,\sigma,I')\in E$, we have $(I,v)\rightarrow_{\sigma}(I',v')$ if $(I,v)\in S$, $(I',v')\in S$ and $(v,v')\in [Jump(e)]$;

► continuous steps: for each $\delta \in \mathbb{R} \ge 0$, we have $(I,v) \rightarrow \delta(I',v')$ if $(I,v) \in S$, $(I',v') \in S$, I=I',

and there exists a differentiable function $f:[0,\delta] \rightarrow \mathbb{R}^m$, with derivative $f'(0,\delta) \rightarrow \mathbb{R}^m$ such that :

1) f(0)=v, 2) $f(\delta)=v'$ and 3) for all $\varepsilon \in (0,\delta)$, both





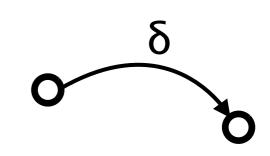
Transition relation

discrete steps:

- for each edge $e=(I,\sigma,I')\in E$, we have $(I,v)\rightarrow_{\sigma}(I',v')$ if $(I,v)\in S$, $(I',v')\in S$ and $(v,v')\in [Jump(e)]$;
- ▶ continuous steps: for each $\delta \in \mathbb{R} \ge 0$, we have $(I,v) \rightarrow \delta(I',v')$ if $(I,v) \in S$, $(I',v') \in S$, I=I',

and there exists a differentiable function $f:[0,\delta] \rightarrow \mathbb{R}^m$, with derivative $f'(0,\delta) \rightarrow \mathbb{R}^m$ such that :

- I) f(0)=v, 2) $f(\delta)=v'$ and 3)for all $\epsilon \in (0,\delta)$, both
 - f(ε)∈[[Inv(I)]] and
 - $(f(\varepsilon), f(\varepsilon)) \in \llbracket Flow(I) \rrbracket$.



σ

Reachability

- Let $Path_F(S_0)$ = set of finite paths starting from a state in S_0
- $\begin{array}{ll} \blacktriangleright \quad Let \ T=(S,S_0,\Sigma, \rightarrow) \ be \ a \ TTS \\ Let \ \lambda=s_0 \tau_0 s_1 \tau_1 ... s_n \in Path_F(T) \\ \hline State(\lambda) \ denotes \ the \ set \ of \ states \ that \ appear \ along \ \lambda \end{array}$
- We say that a path λ reaches a state s if $s \in \text{State}(\lambda)$
- We say that s is reachable in T if $s \in \bigcup_{\lambda \in PathF(T)} State(\lambda)$
- Reach(T) denotes the set of states reachable in T

Safety and reachability

- A set of state $R \subseteq S$ is called a region.
- A region R is reachable in T iff $R \cap Reach(T) \neq \emptyset$.
- The rechability problem associated to a TTST and a region R asks if $R \cap Reach(T) \neq \emptyset$.
- The safety problem associated to a TTS T and a region R asks if Reach(T)⊆R.
- Those two problems are dual in the following formal sense:

Let R be a region and $R'=S\R$.

Reach(T)⊆**R iff R'∩Reach(T)**=∅.

Classes of Hybrid Automata

Linear HA

-Linear flow constraints: Lin(X*), ex: x*=y*+3

-Linear guards and updates: $Lin(X) \rightarrow Lin(X,X'),$ ex: x+y<1 \rightarrow x':=y+2

Linear HA

-Linear flow constraints: Lin(X*), ex: x*=y*+3

-Linear guards and updates: Lin(X) \rightarrow Lin(X,X'), ex: x+y<1 \rightarrow x':=y+2

Rectangular HA

-**Rectangular** flow constraints: Rect(X'), $ex: x \in [1,2] \land y \in [2,5]$

-**Rectangular** guards-updates: Rect(X) \rightarrow Rect(X') **ex**: x \in [2,5] \rightarrow x' \in [5,7]

Linear HA

-Linear flow constraints: Lin(X*), ex: x*=y*+3

-Linear guards and updates: $Lin(X) \rightarrow Lin(X,X'),$ ex: x+y<1 \rightarrow x':=y+2

Affine HA

-Affine flow constraints: Aff(X,X'), ex: x'=2x+3y

-Linear guards and updates: $Lin(X) \rightarrow Lin(X,X'),$ ex: x+y<1 \rightarrow x':=y+2

Rectangular HA

-**Rectangular** flow constraints: Rect(X'), $ex: x \in [1,2] \land y \in [2,5]$

-**Rectangular** guards-updates: Rect(X) \rightarrow Rect(X') **ex**: x \in [2,5] \rightarrow x' \in [5,7]

Linear HA

-Linear flow constraints: Lin(X*), ex: x*=y*+3

-Linear guards and updates: $Lin(X) \rightarrow Lin(X,X'),$ ex: x+y<1 \rightarrow x':=y+2

Affine HA

-Affine flow constraints: Aff(X,X'), ex: x'=2x+3y

-Linear guards and updates: $Lin(X) \rightarrow Lin(X,X'),$ ex: x+y<| \rightarrow x':=y+2

Rectangular HA

-**Rectangular** flow constraints: Rect(X'), $ex: x \in [1,2] \land y \in [2,5]$

-**Rectangular** guards-updates: Rect(X) \rightarrow Rect(X') **ex**: x \in [2,5] \rightarrow x' \in [5,7]

O-minimal HA

-Use of **O-minimal theory**

-Strong resets: all variables are reset during any mode change

Symbolic Semi-Algorithm for RHA/LHA

• A linear term over X is a linear combination of the variables in X with integer coefficients.

ex: 3x+2y-1.

• A linear formula over X is a boolean combination of inequalities between linear terms over X.

ex: $3x+2y-1 \ge 0 \land y \ge 5$.

• Given a linear formula ψ , we write $\llbracket \psi \rrbracket$ for the set of valuations v such that $v \models \psi$.

Linear formulas + quantifiers
 =T(ℝ,0,1,+,≤).
 =The theory of reals with addition.

This theory allows for quantifier elimination.

ex : " $\forall y \cdot y \ge 5 \rightarrow x+y \ge 7$ " is equivalent to " $x \ge 2$ ".

• A symbolic region of H is a finite set

 $\label{eq:constraint} \left\{ \ (I,\psi_I) \ \big| \ I \in Loc \ \right\} \text{ where } \llbracket \psi_I \rrbracket \subseteq \llbracket Inv(I) \rrbracket.$

Given a location $I \in Loc$ and a set of valuations $V \subseteq [X \rightarrow \mathbb{R}]$ such that $V \subseteq Inv(I)$, the forward time closure, noted $\langle V \rangle_I \nearrow$ is the set of valuations that are

reachable from some valuation $v \in V$ by letting time pass.

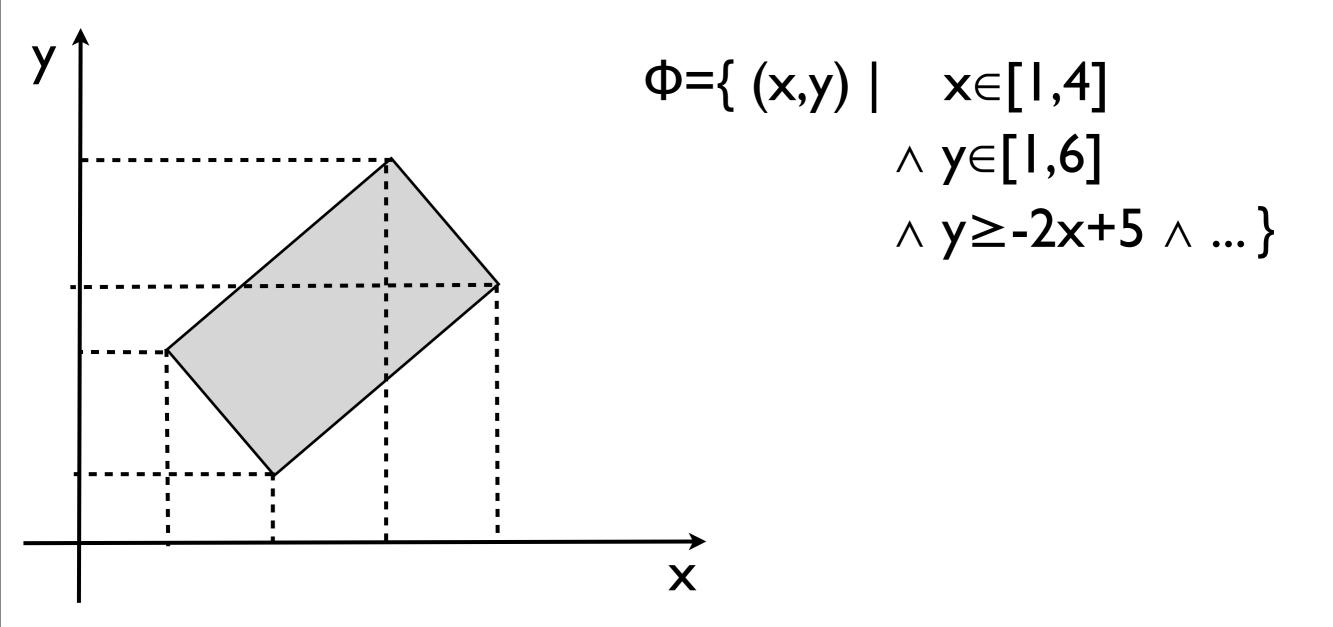
This set is defined as follows:

 $\begin{array}{l} \langle V \rangle_{I}^{\nearrow} \text{ is the set of valuation } v' \in [X \rightarrow \mathbb{R}] \text{ such that} \\ \exists v \in V \bullet \exists t \in \mathbb{R} \geq 0 \bullet \forall x \in X \bullet \\ v(x) + t \times Inf([Flow(I)](x)) \leq v'(x) \leq v(x) + t \times Sup([Flow(I)](x)) \\ \land v'(x) \in [Inv(I)]. \end{array}$

After **quantifier eliminations**, we get a boolean combination of linear constraints.

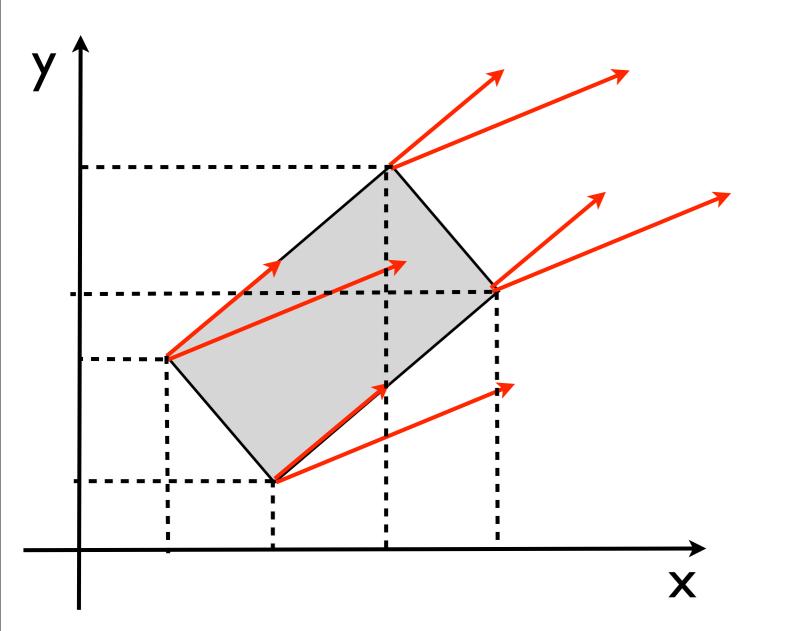
An example of time elapsing

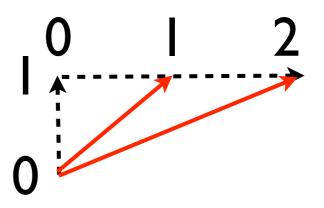
Assume x[•]=[1,2] and y[•]=1

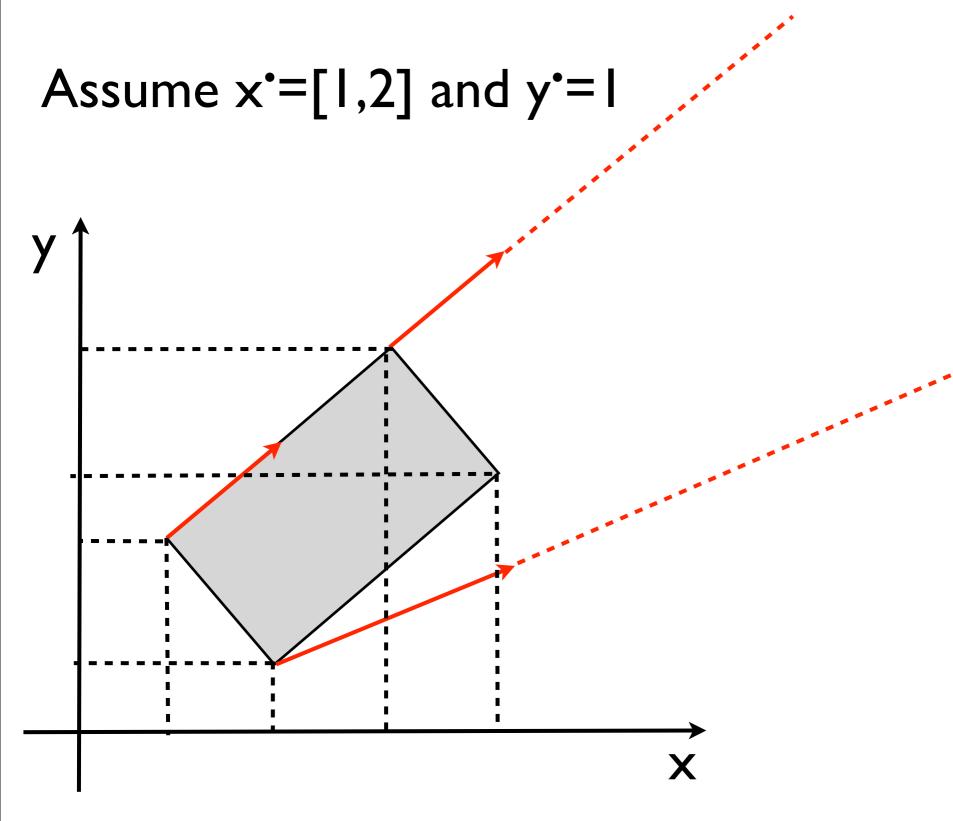


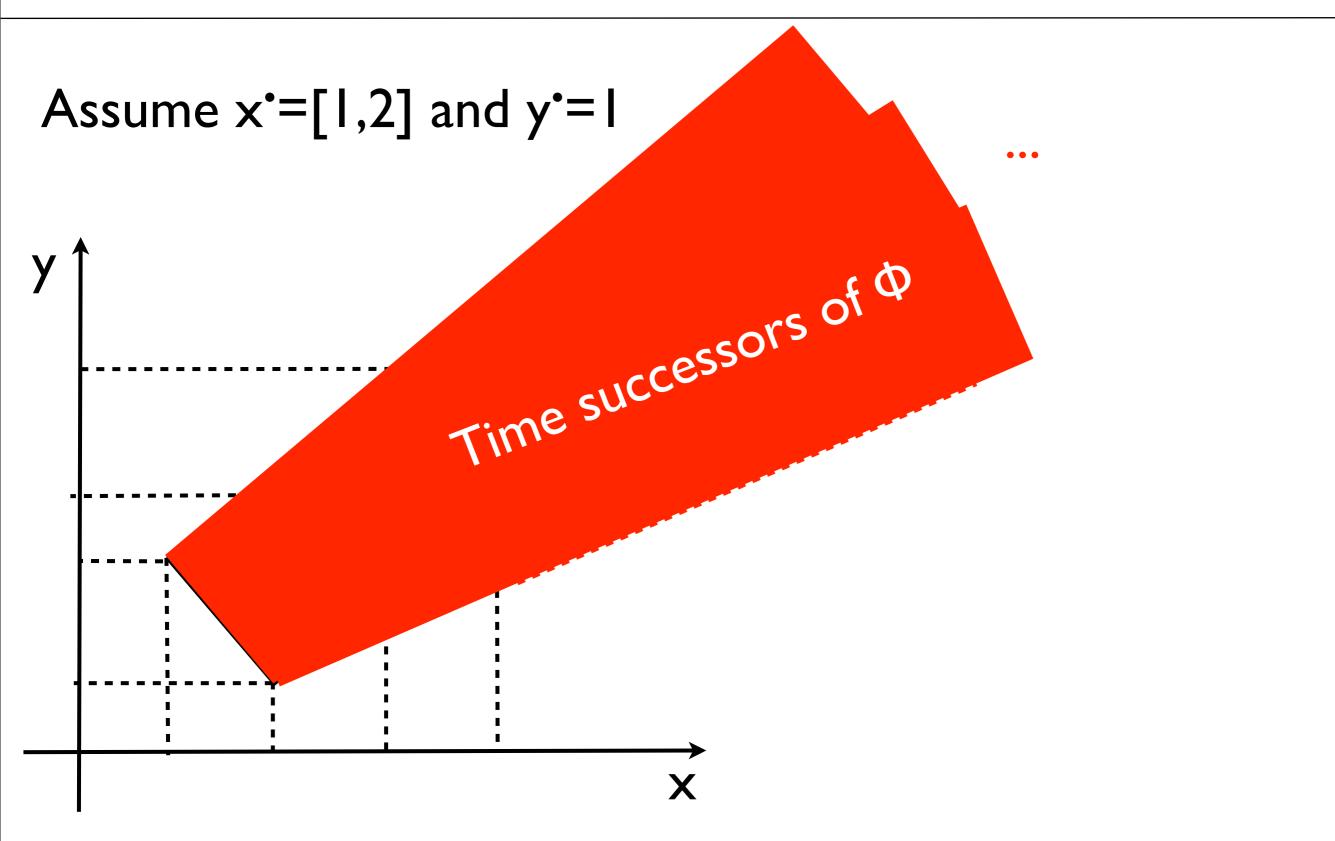
An example of time elapsing

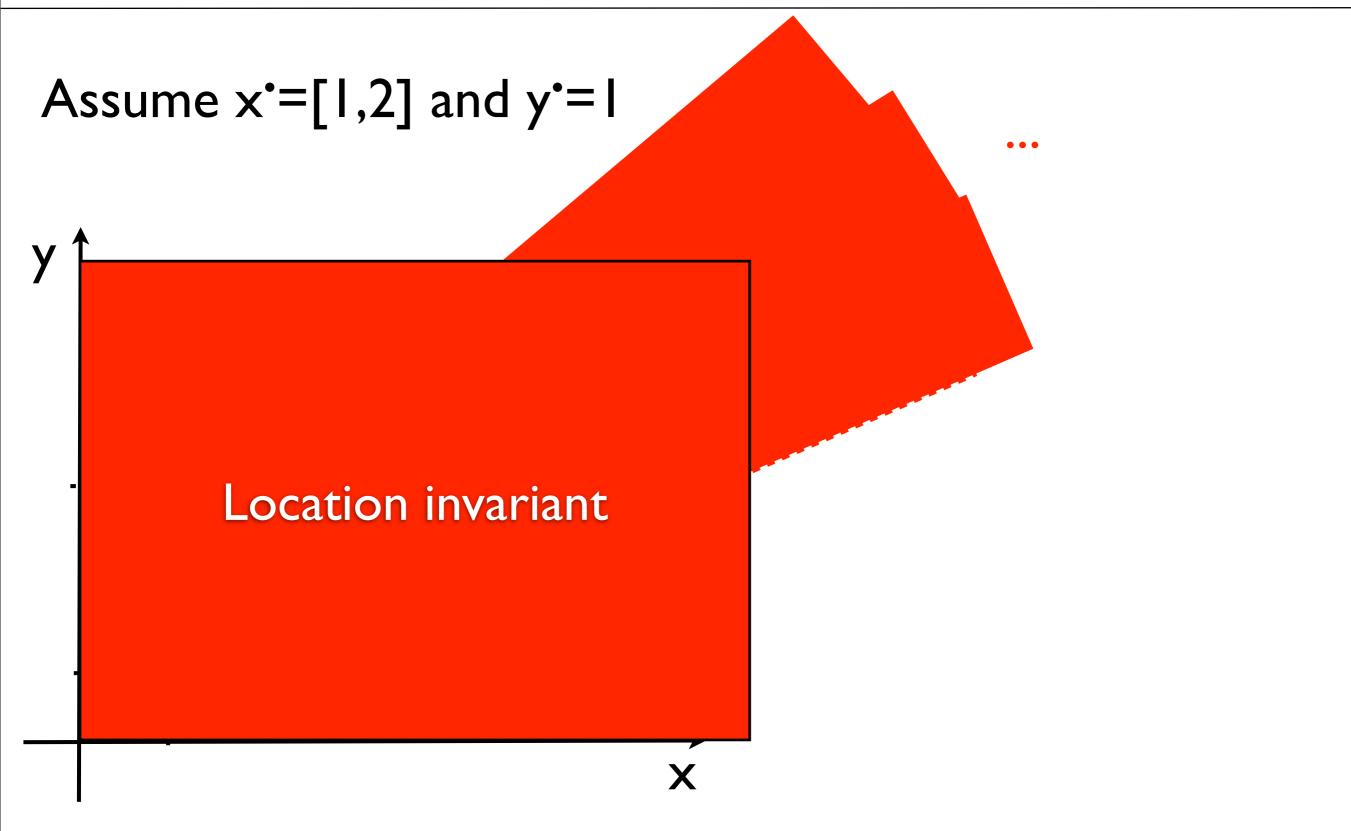
Assume x[•]=[1,2] and y[•]=1



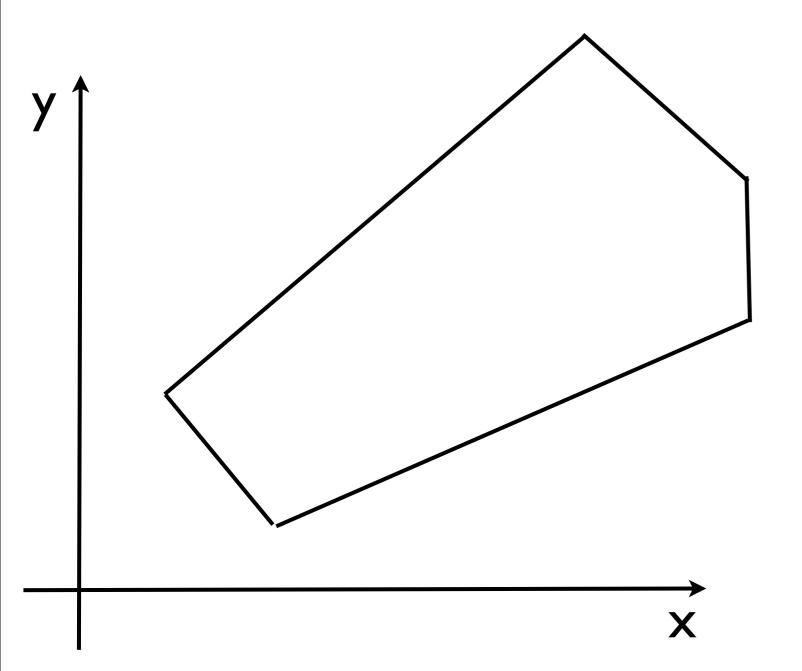


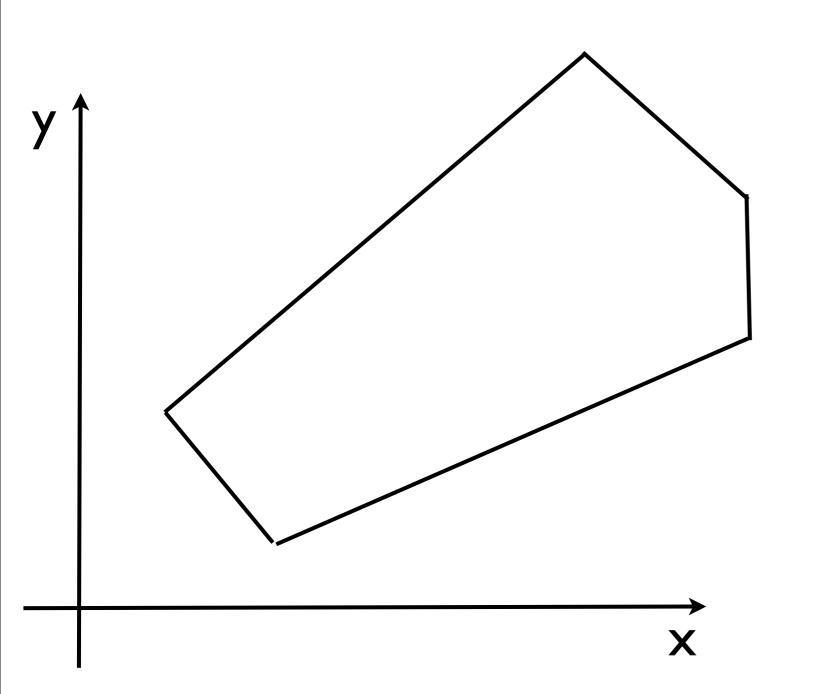


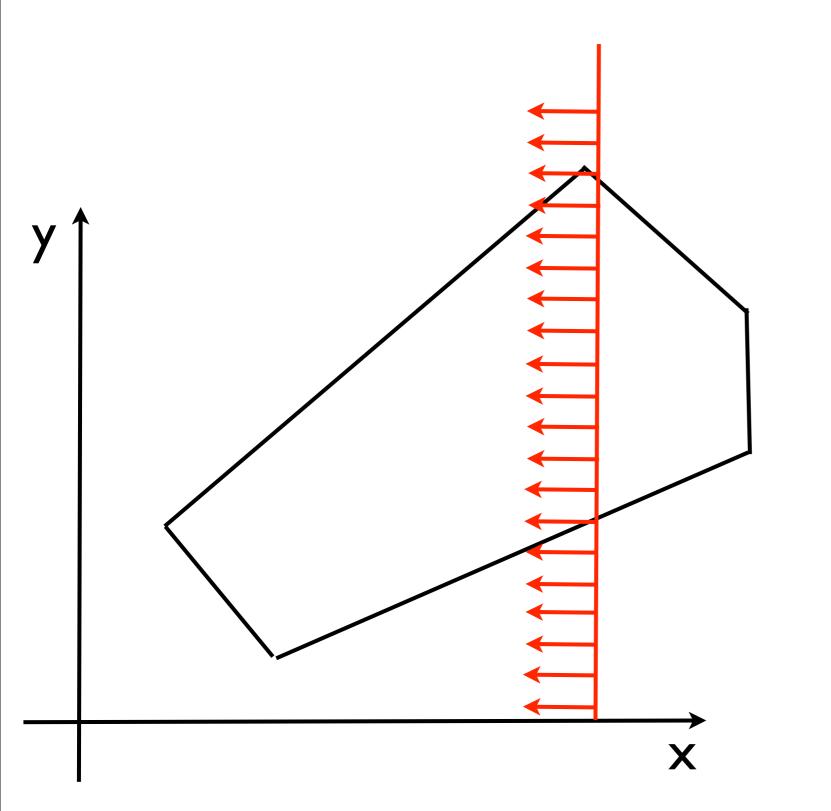


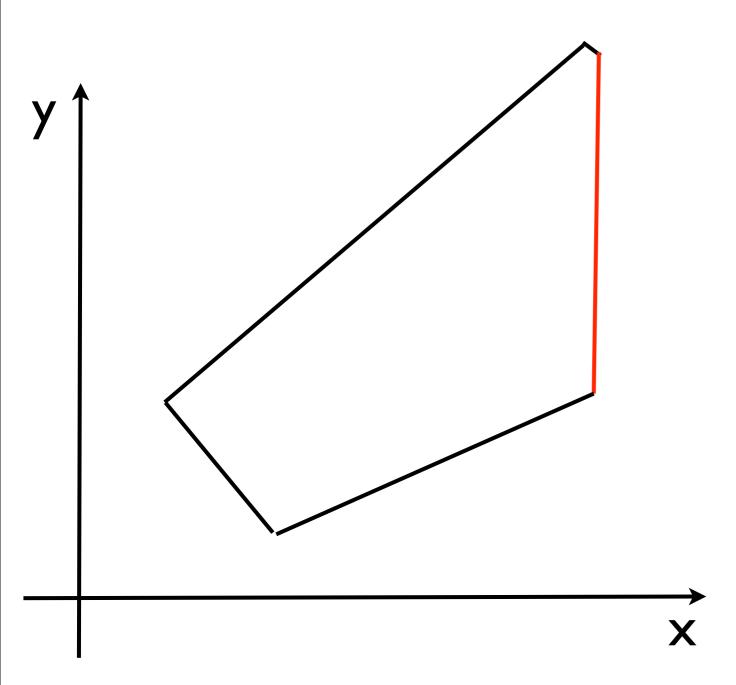


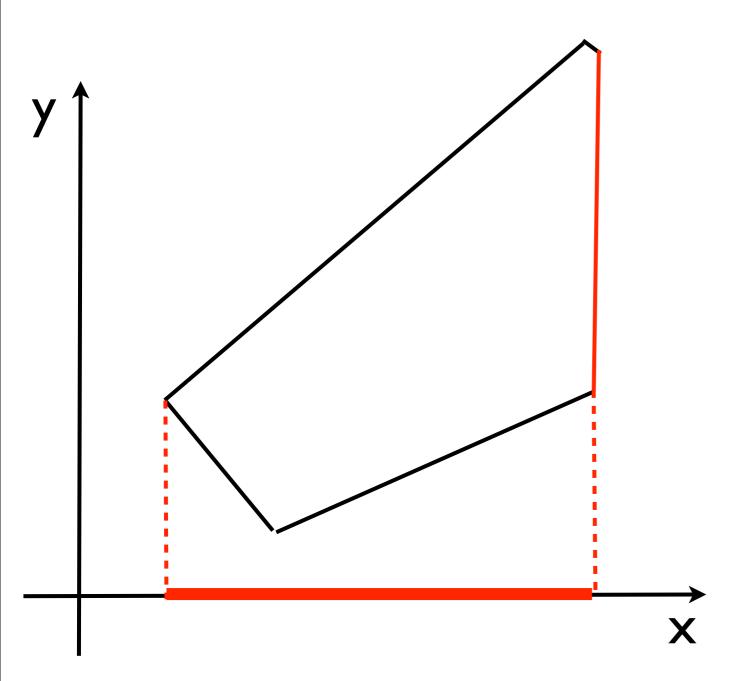
Assume x[•]=[1,2] and y[•]=1



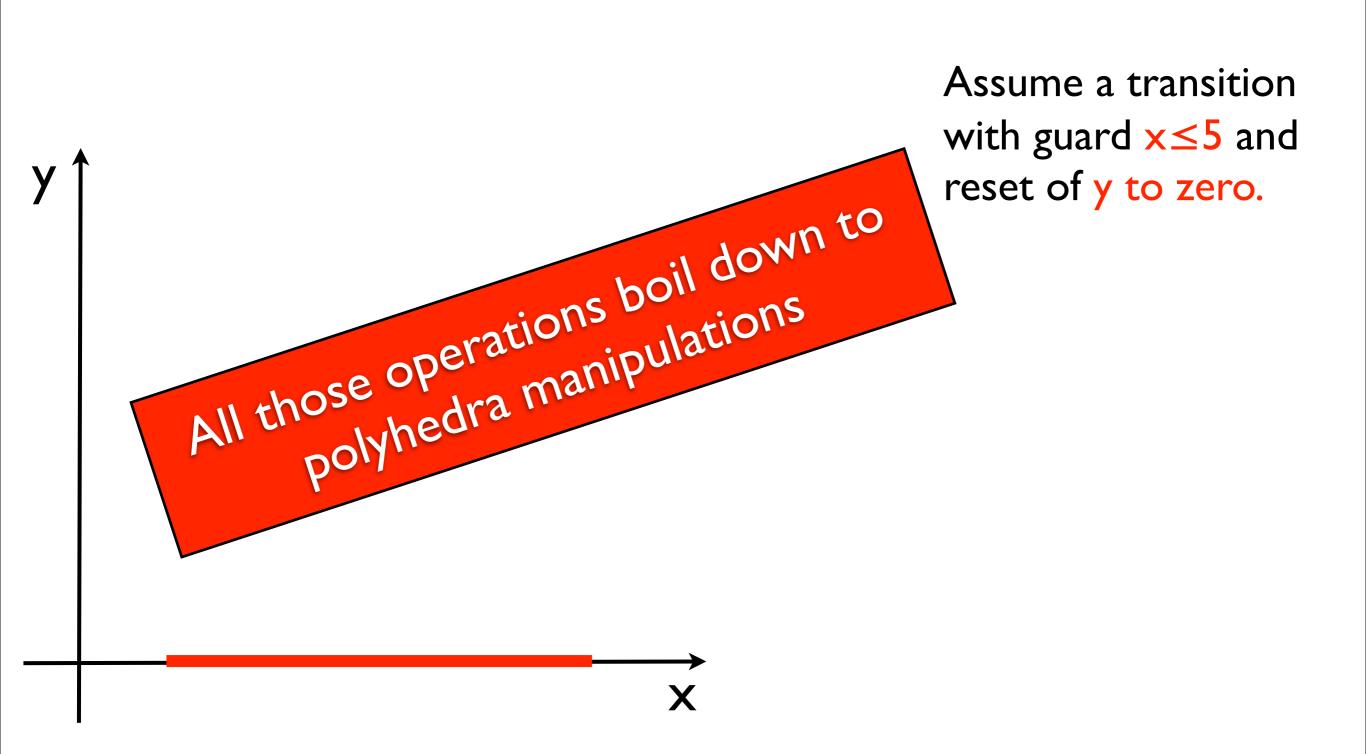


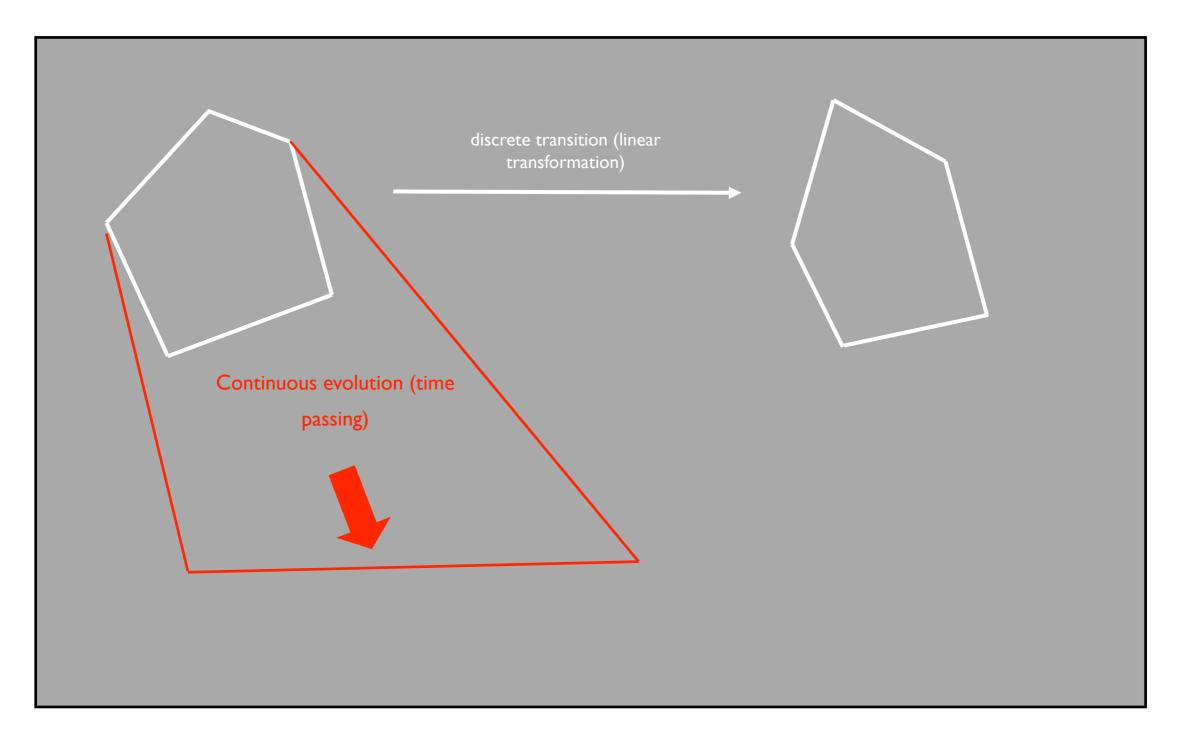


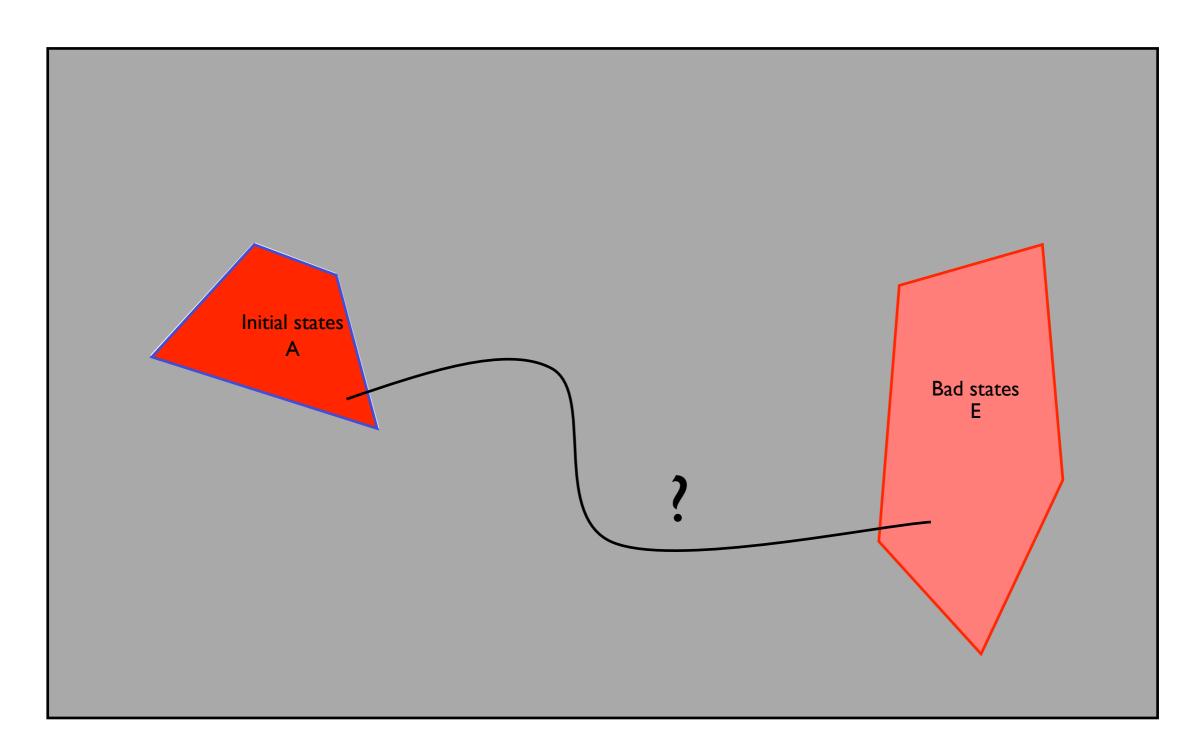


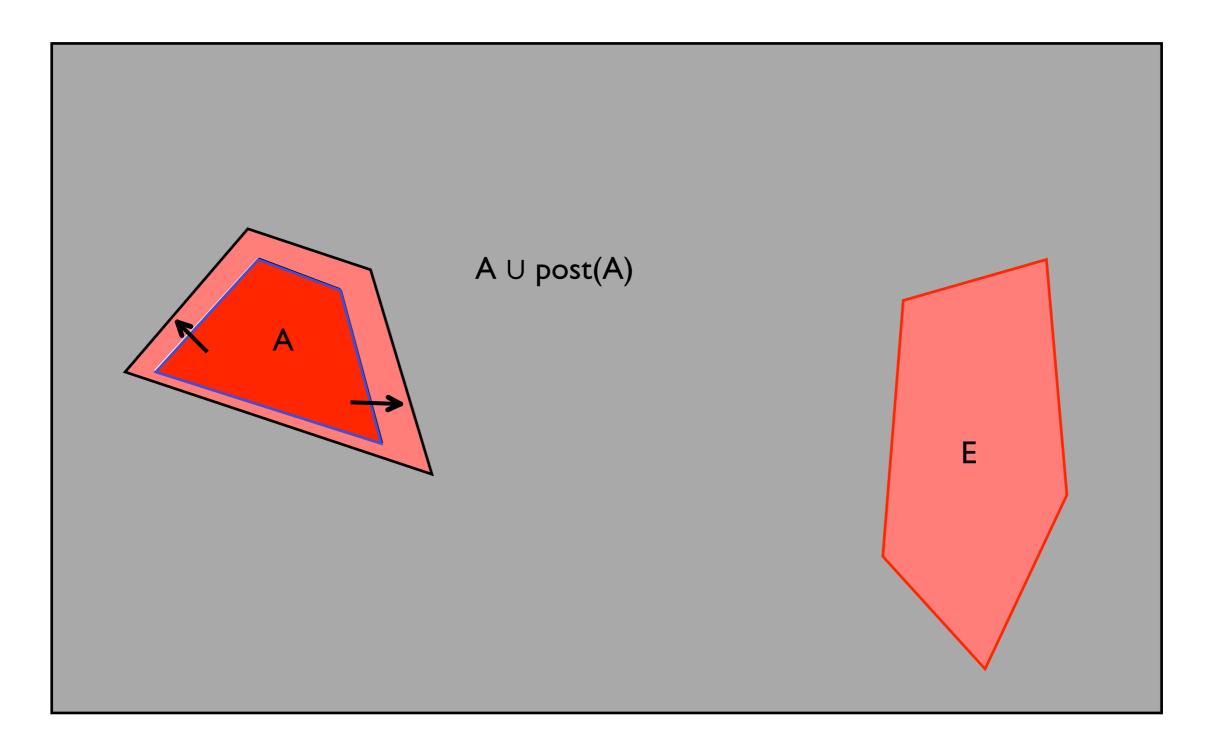


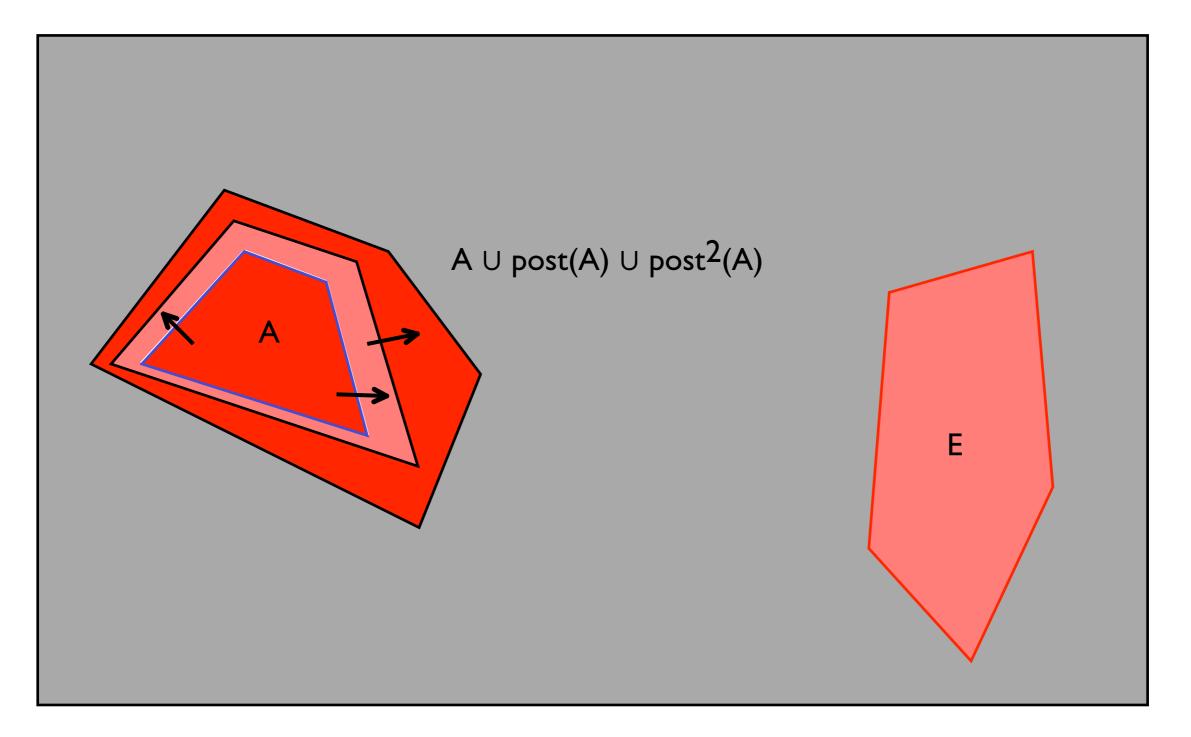
Χ

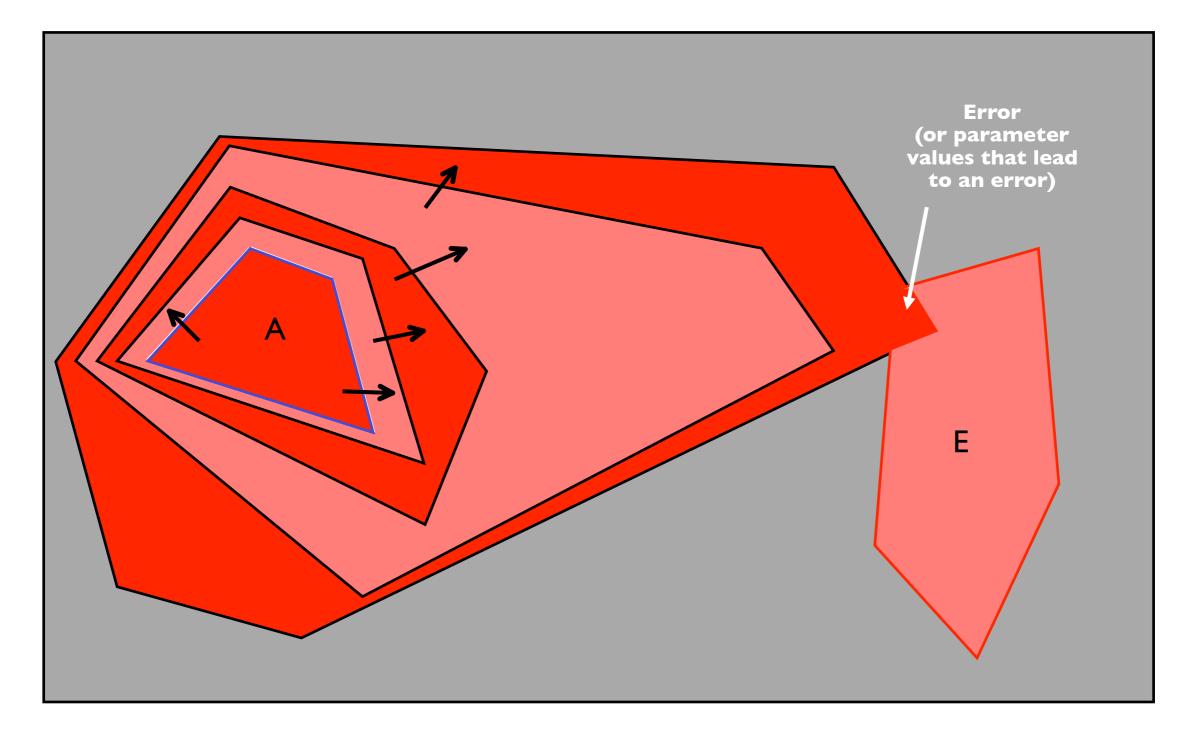


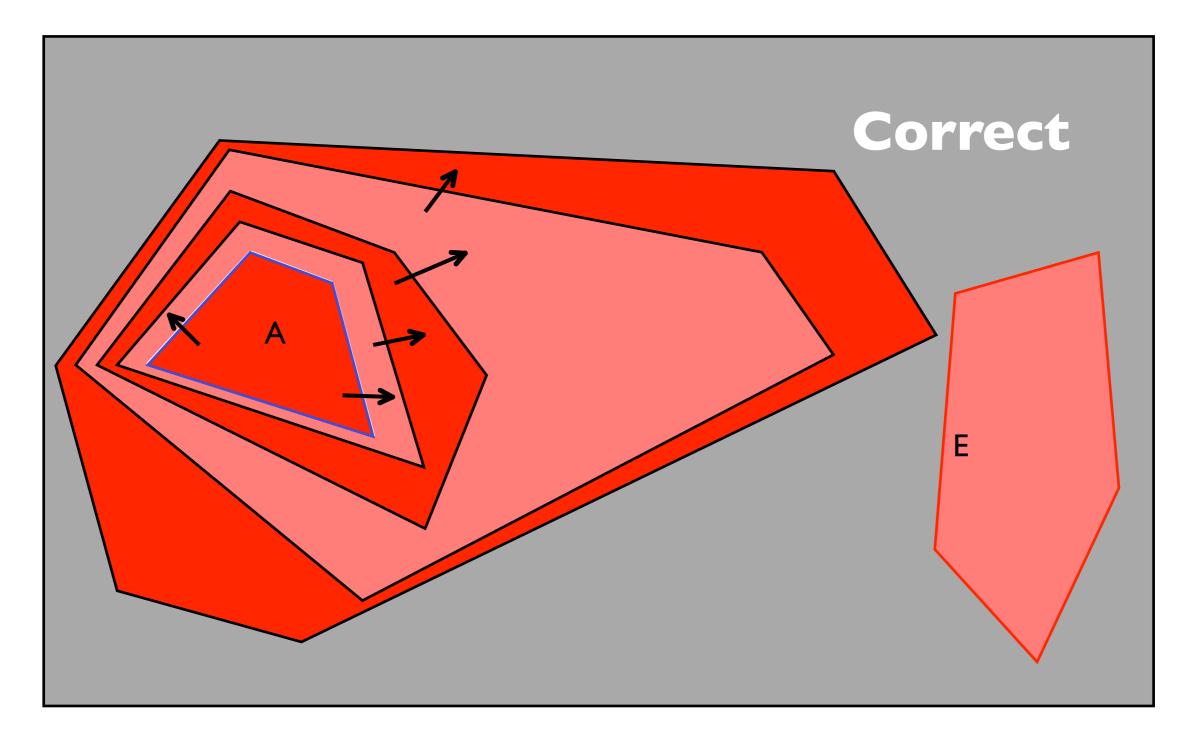


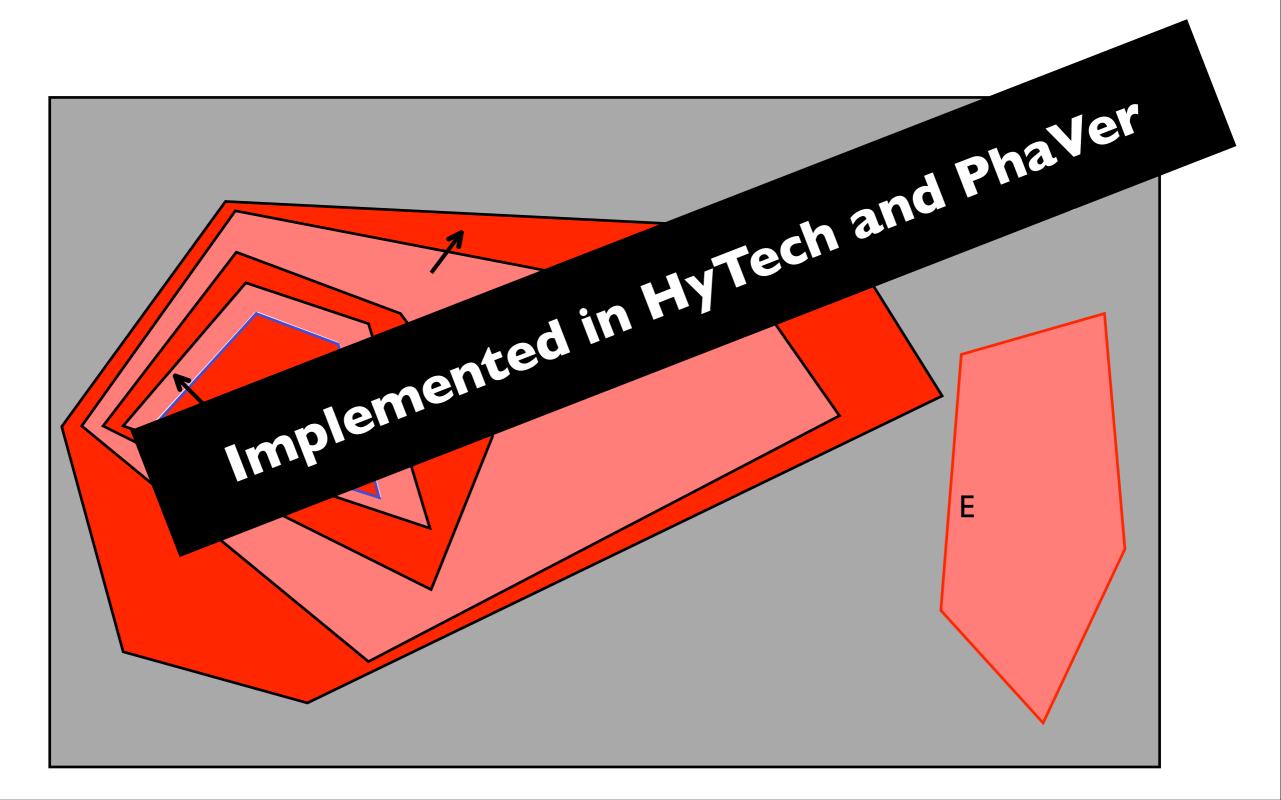






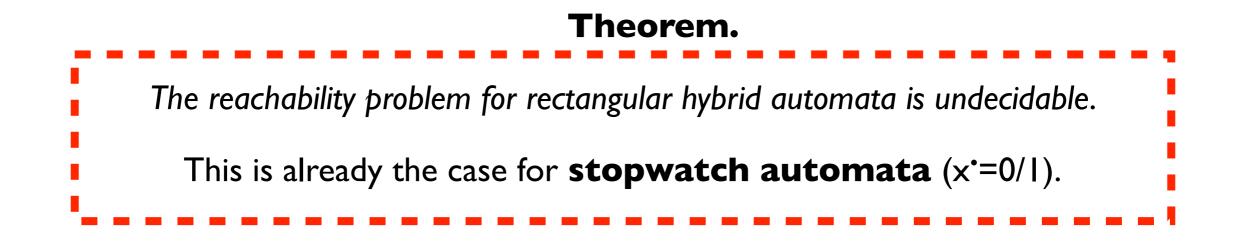




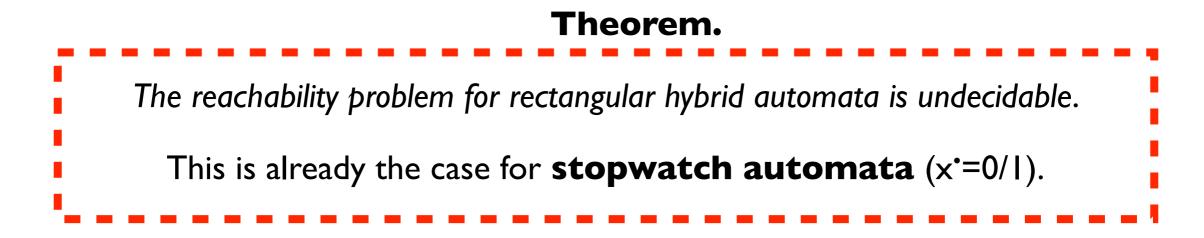


Decidability/ undecidability

Undecidability



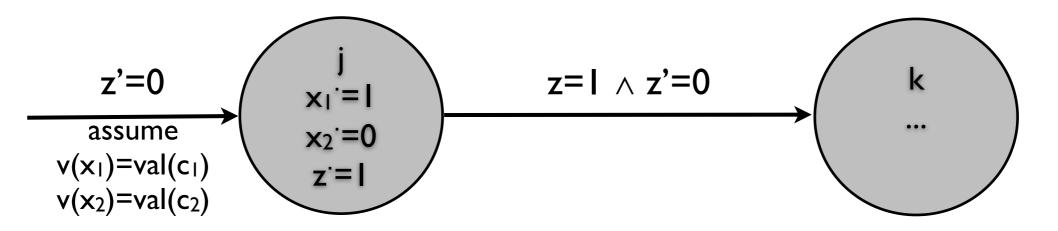
Undecidability



Proof (sketch). By simulation of **two-counter machines** for which the halting problem is undecidable.

To simulate a 2-CM M, we use a RHA with 3 continuous variables.

Let us consider the instruction **j**: **c**₁:=**c**₁+**l**; **goto k**;

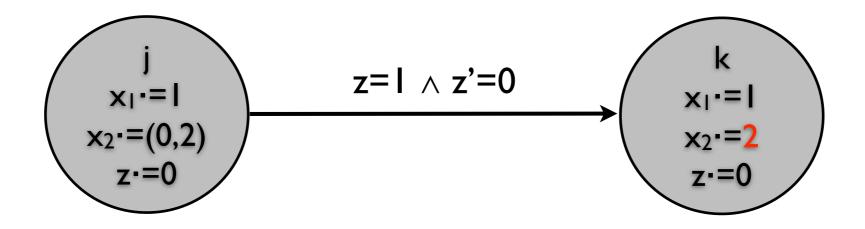


• A RHA is **initialized**, if for all discrete jumps (I_1, σ, I_2) , and for all variables $x \in X$:

-either the flow constraints on x in I_1 and I_2 are identical

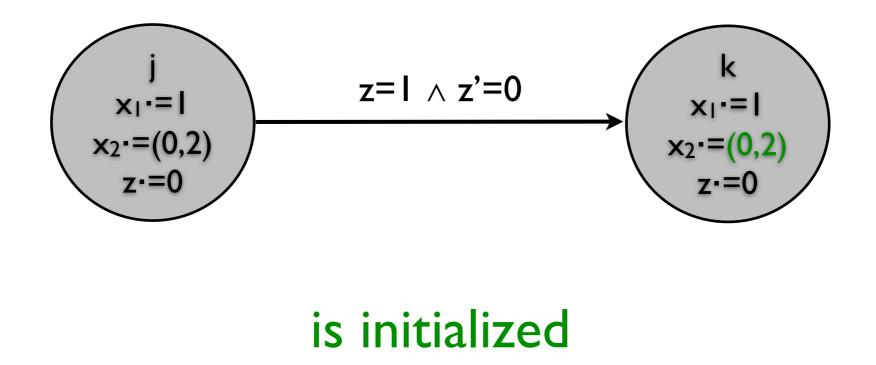
-or variable x is updated during the discrete jump from I_1 to I_2

- A RHA is **initialized**, if for all discrete jumps (I_1, σ, I_2) , and for all variables $x \in X$:
 - -either the flow constraints on x in I_1 and I_2 are identical
 - -or variable x is updated during the discrete jump from I_1 to I_2

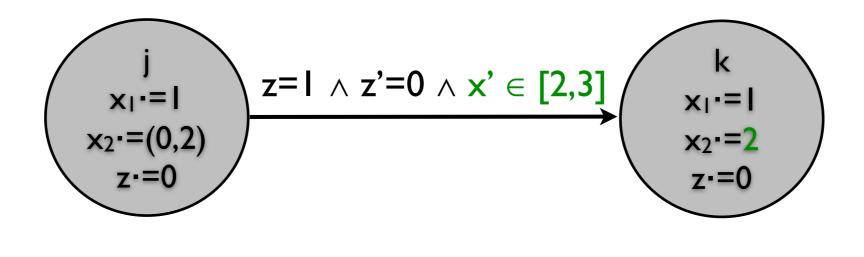


is not initialized

- A RHA is **initialized**, if for all discrete jumps (I_1, σ, I_2) , and for all variables $x \in X$:
 - -either the flow constraints on x in I_1 and I_2 are identical
 - -or variable x is updated during the discrete jump from I_1 to I_2



- A RHA is **initialized**, if for all discrete jumps (I_1, σ, I_2) , and for all variables $x \in X$:
 - -either the flow constraints on x in I_1 and I_2 are identical
 - -or variable x is updated during the discrete jump from I_1 to I_2



is initialized

• A RHA is **initialized**, if for all discrete jumps (I_1, σ, I_2) , and for all variables $x \in X$:

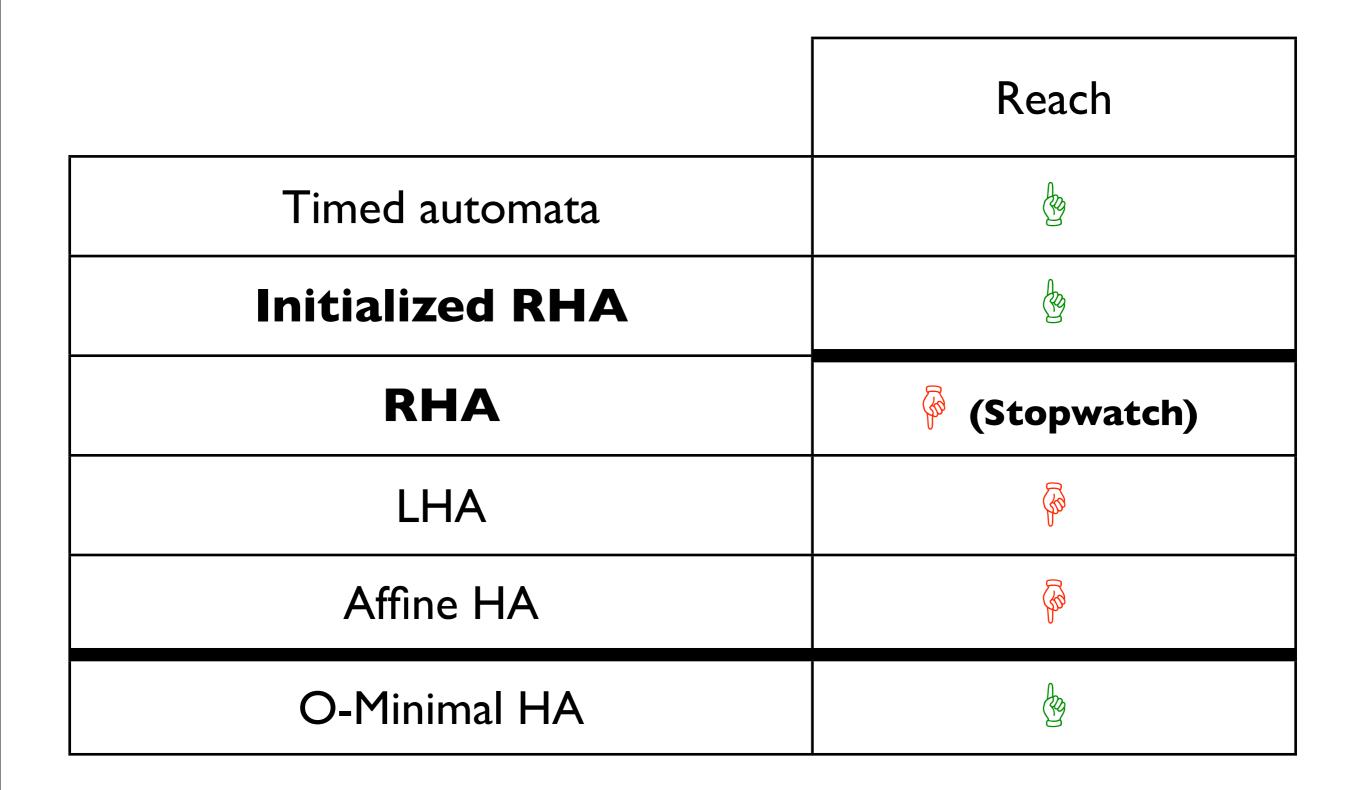
-either the flow constraints on x in I_1 and I_2 are identical

-or variable x is updated during the discrete jump from I_1 to I_2

Theorem[HPV96]. The reachability problem (and LTL modelchecking problem) is **decidable** for the class of **initialized rectangular automata**.

- Note that Initialized RHA generalizes timed automata
- Existence of finite similarity quotient (init-RHA) and bisimilarity quotient (TA)

Decidability/Undecidability

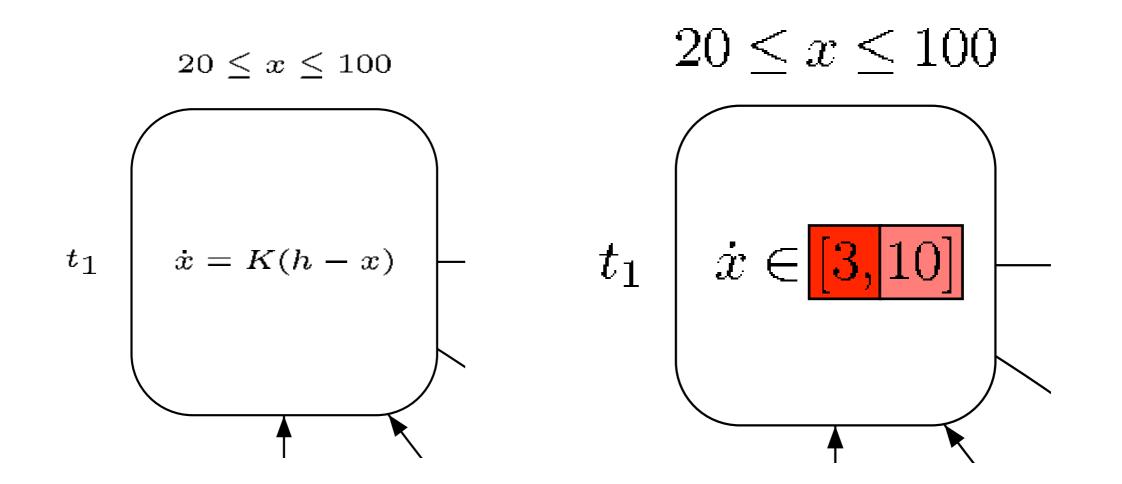


Beyong RHA/LHA Approximate Reachability

Rectangular approximations

- **Approximate** complex dynamics with rectangular dynamics
- ... use PhaVer or Hytech for analysis
- Rectangular approximations are often **precise enough**
- For each control mode we **partition** the space into rectangular regions
- Within each region, the flow field is over-approximated using rectangular flows
- Those approximations can often be obtained automatically: for affine HA \rightarrow solve an **LP** problem
- Approximations can be made arbitrarily precise by approximating over suitably small regions of the state space

An example

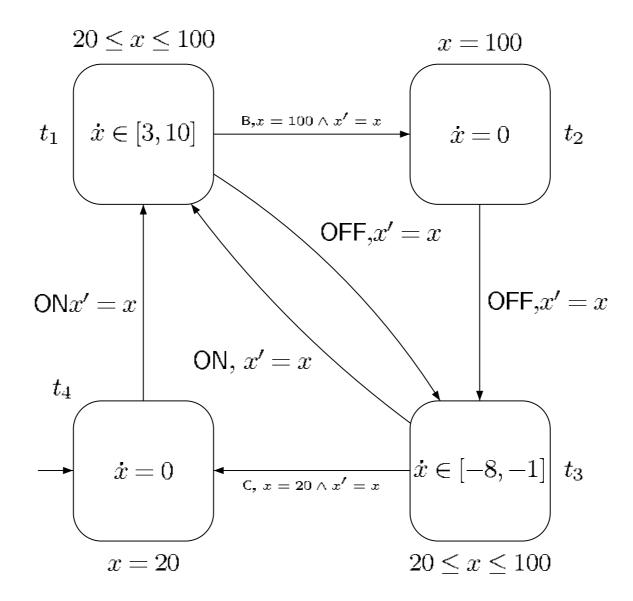


 $\begin{aligned} & \mathsf{Max}_{x\in[20,100]}\,\mathsf{K}(\mathsf{h-x})=\mathsf{K}(\mathsf{h-20})=0.075(150\text{-}20)=9.75\,\leq\,|\,0\\ & \mathsf{Min}_{x\in[20,100]}\,\mathsf{K}(\mathsf{h-x})=\mathsf{K}(\mathsf{h-100})=0.075(150\text{-}100)=3.75\,\geq\,3 \end{aligned}$

Monday 3 October 2011

An example

 Applying this computation for each location, we get the following rectangular approximation of the tank:



Over-approximations and correctness

- Let us note RectOver(H) the rectangular over-approximation obtained using the previous method;
- RectOver(H) is a over-approximation of the original system in the following formal sense:

 $Path_{F}(\llbracket H \rrbracket) \subseteq Path_{F}(\llbracket RectOver(H) \rrbracket)$

Transfert of correctness from overapproximations:

if Path_F([[RectOver(H)]])∩BadPaths=Ø then Path_F([[H]])∩BadPaths=Ø

Over-approximations and correctness

- When over-approximating the behavior of a system, we face the possibility to get false negatives during verification;
- Indeed, the set of behaviors of the over-approximation is a superset of the behaviors of the original system...
- ...so if we have that

Path_F([[RectOver(H)]])∩BadPaths≠∅

it is **not** nessarily the case that

Path_F([[H]])∩BadPaths≠Ø

Candidate counter examples

- A path $\lambda = s_0 T_0 s_1 T_1 \dots T_{n-1} s_n$ is an **candidate counter example** if
 - $\lambda \in [\![OverRect(H)]\!] \cap BadPaths$
- When facing a candidate counter example, we check if the counter example is realizable in the original model, so we ask:
 - $\lambda \in [H]$

This test is possible for larger class than rectangular automata, i.e. affine/polynomial hybrid automata.

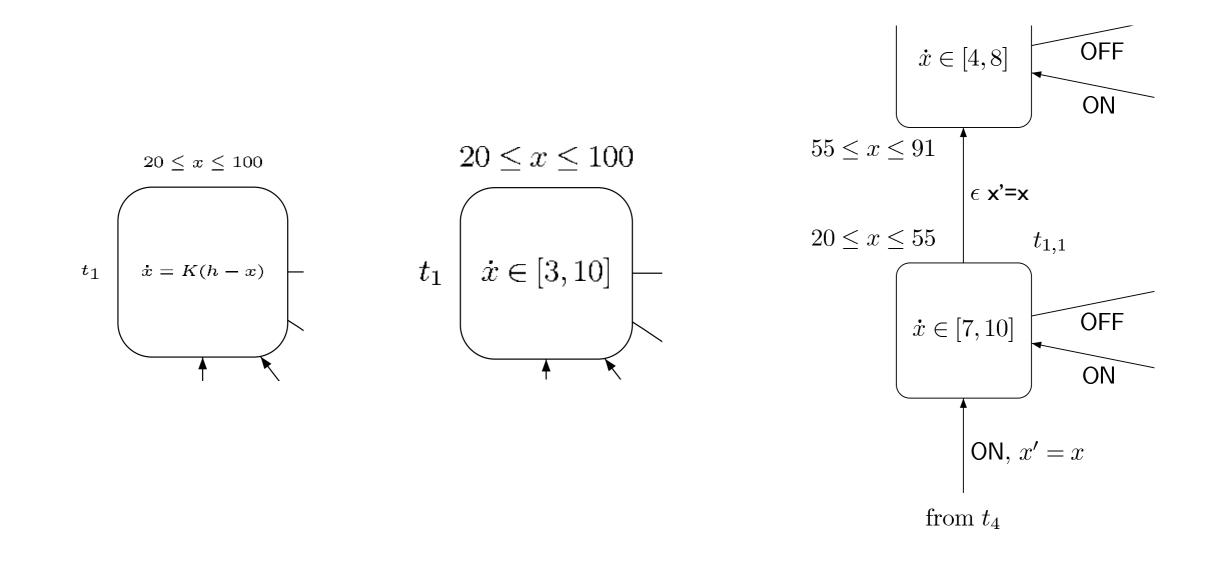
If λ∈[[H]], then we have found a real counter example i.e., the a Bad path in the original HA H.

Spurious counter-examples

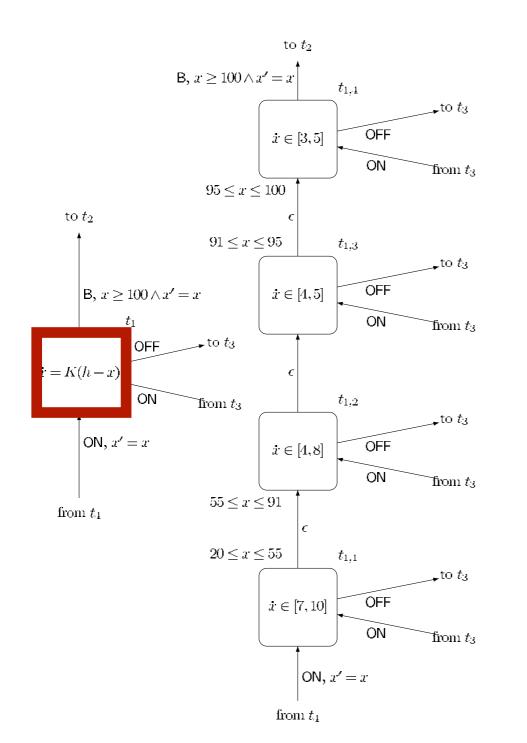
- If $\lambda \notin [H]$, then λ is a **spurious counter example** i.e.:
 - $\lambda \in [\![OverRect(H)]\!] \cap BadPaths$
 - $\lambda \notin \llbracket H \rrbracket$
- In this case, we must refine OverRect(H) in order to eliminate the counter example.
- There is a large research effort in the CAV community on the so-called counter-example based abstraction refinement, and variants.

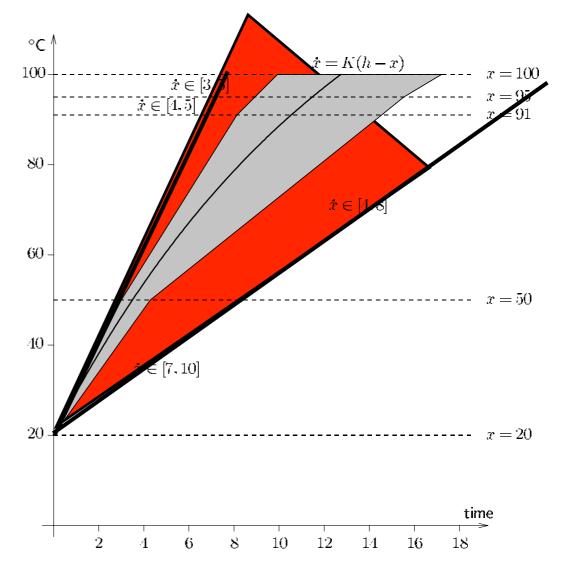
Abstraction refinement

In presence of spurious counter examples, we refine the rectangular approximation by splitting locations to decorate them with smaller rectangular regions.



Example





Time-bounded Reachability

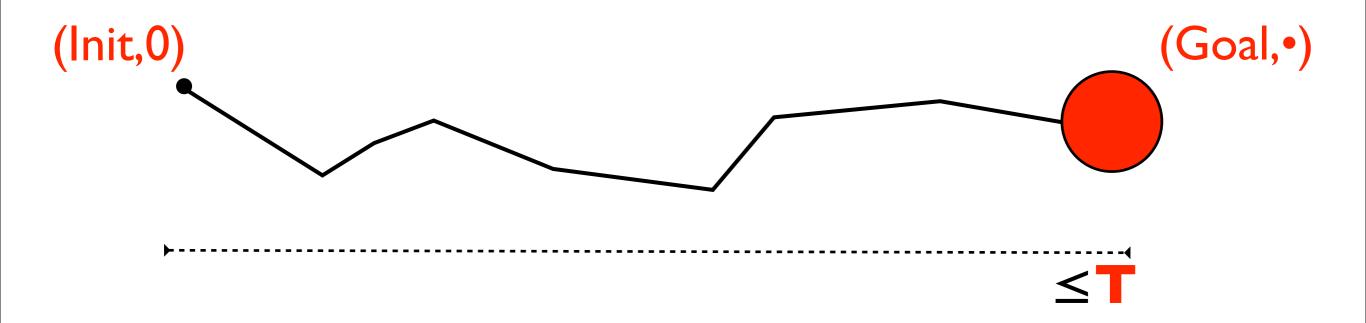
Time Bounded Reachability

Definition

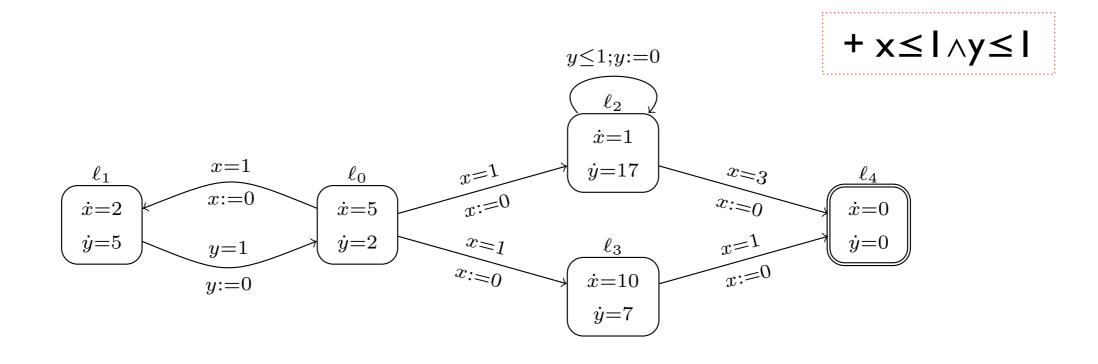
- Given an LHA H=(X,Loc,Edges,Rates,Inv,Init)
 - ▶ a location Goal∈Loc and
 - a time bound $\mathbf{T} \in \mathbb{N}$

The time bounded reachability problem is to decide

if $\exists \rho = (\text{Init}, 0) \rightarrow (\text{Goal}, \bullet)$ of H with $\frac{\text{duration}(\rho) \leq \mathbf{T}}{\mathbf{T}}$.



Time Bounded Reachability

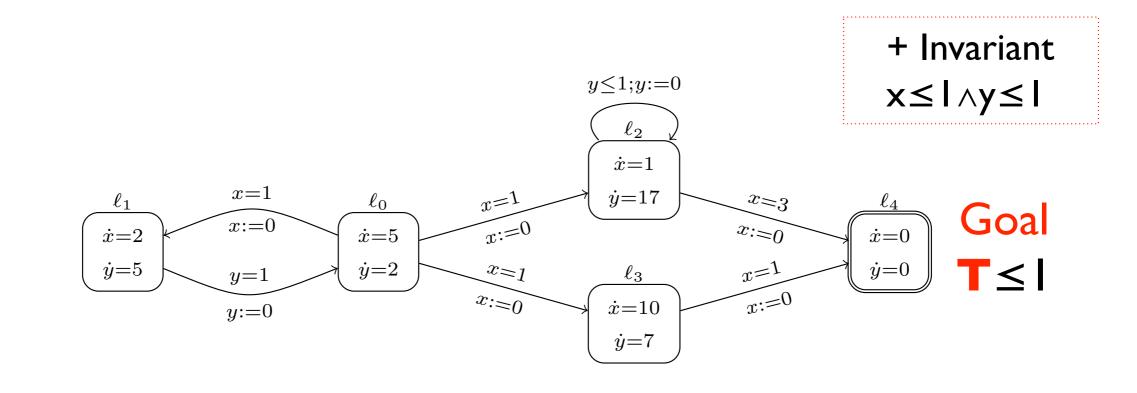


This automaton is **non-initialized**, but

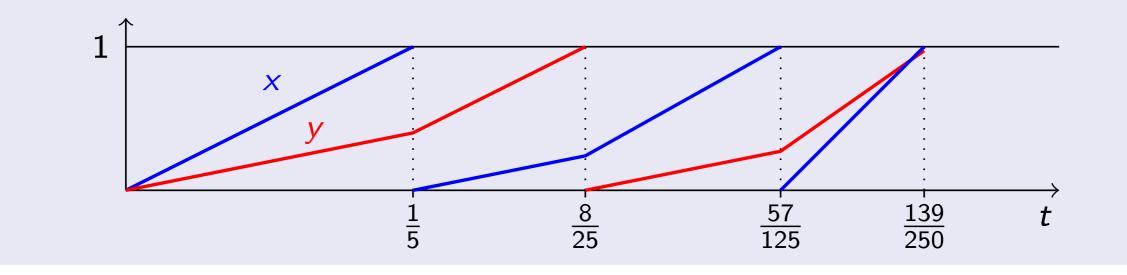
(I) non-negative rates(II) diagonal free

► class RHA⊕ for which we show decidability of TBR

Time Bounded Reachability



$$(\ell_0,0,0) \xrightarrow{\frac{1}{5},e_{01}} (\ell_1,0,\frac{2}{5}) \xrightarrow{\frac{3}{25},e_{10}} (\ell_0,\frac{6}{25},0) \xrightarrow{\frac{17}{125},e_{03}} (\ell_3,0,\frac{34}{125}) \xrightarrow{\frac{1}{10},e_{34}} (\ell_4,0,\frac{243}{250}).$$



Additional hypothesis (wlog)

- ► RHA⊕:
 - non-negative rates
 - diagonal free
- All variables are bounded by I
 - (L,2.1,4.7) is encoded by ((L,2,4),0.1,0.7)
 - Only guards of the form x<1, x=1
 - As soon as a clock reaches value 1, it is reset

Bounding the number of transitions

Our goal:

- Given ρ an execution of H reaching Goal from (L₀,x₀) within **T** time units.
- We want to build an execution ρ' of H such that :

-ρ' reaches Goal from (L₀,x₀) within T time units
 -the number of transitions of ρ' is **bounded** by a constant depending only of H and T

Solution:

① Simple observation: bounding the number of equalities

2 Bounded witness between equalities

Bounding number of equalities

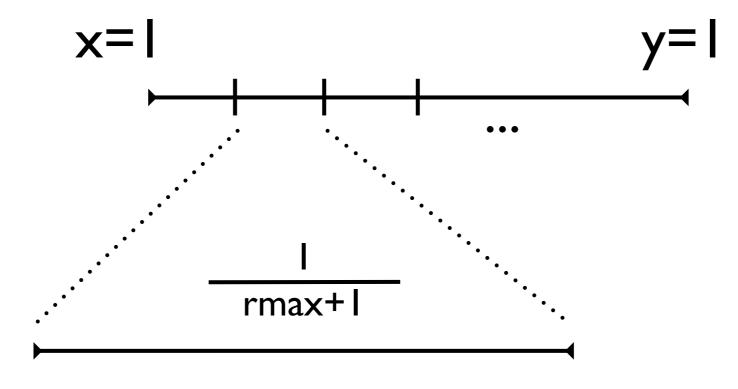
Proposition

- Let H be an RHA⊕ with a set of variables X
- Let ρ be a **T**-time bounded run of H
- Then ρ contains at most |X|•rmax•**T** transitions guarded by an equality

Proof:

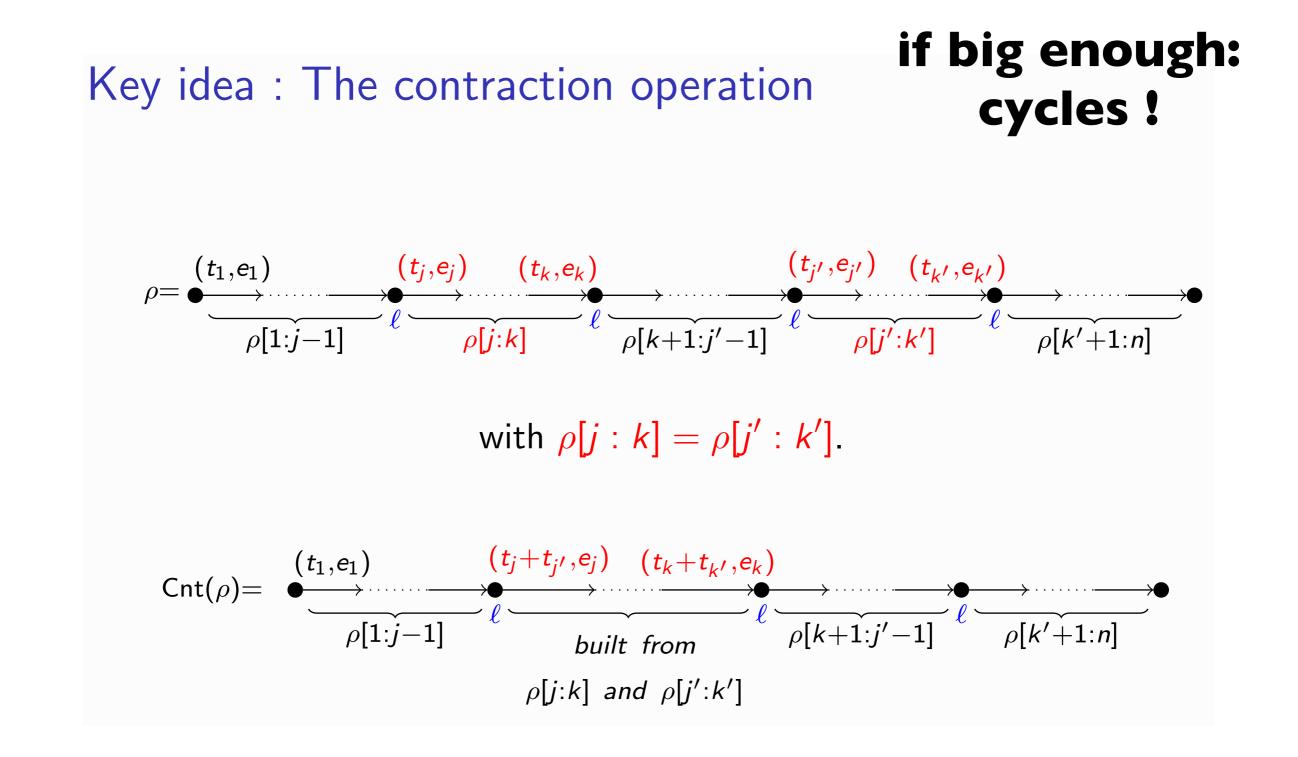
- ► Use bounded time hypothesis
- ▶ False for transitions not guarded by an equality

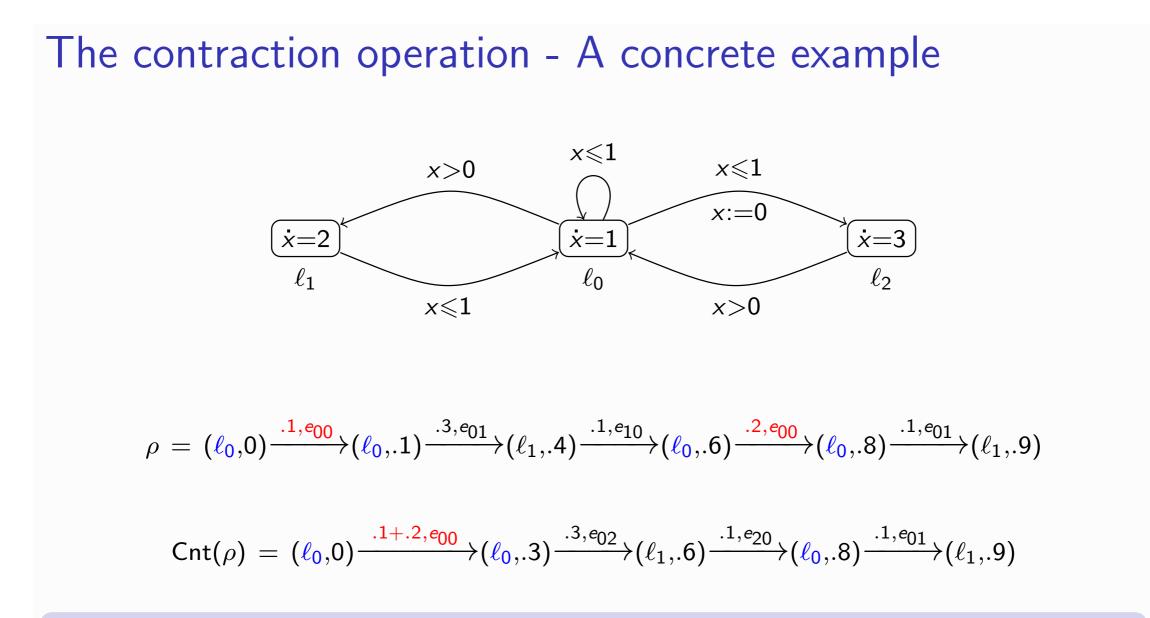
≥I/rmax ►-----4 x:=0 x=1



-no equality-bounded time

 \rightarrow shorten witness

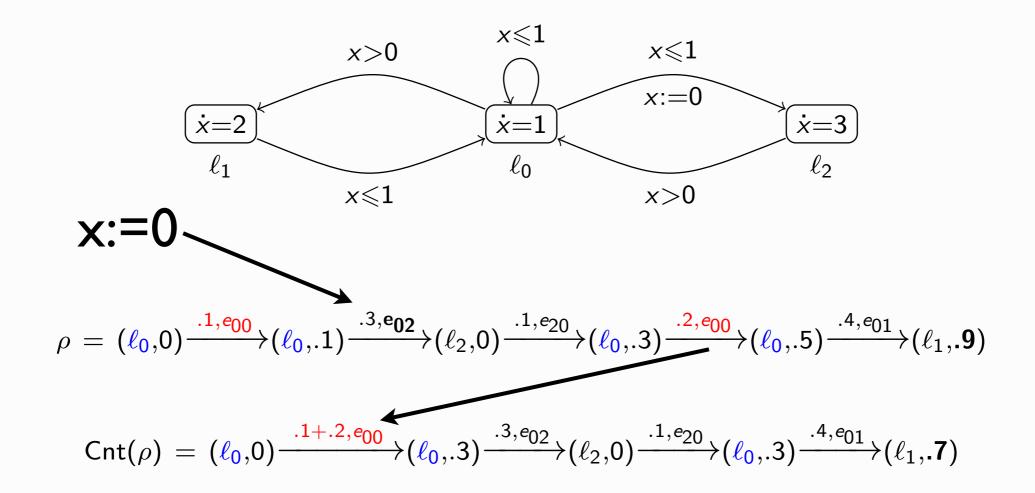




Advantages

- The new execution is shorter (in term of transitions).
- The value of the variables are preserved.

The contraction operation - Problem I



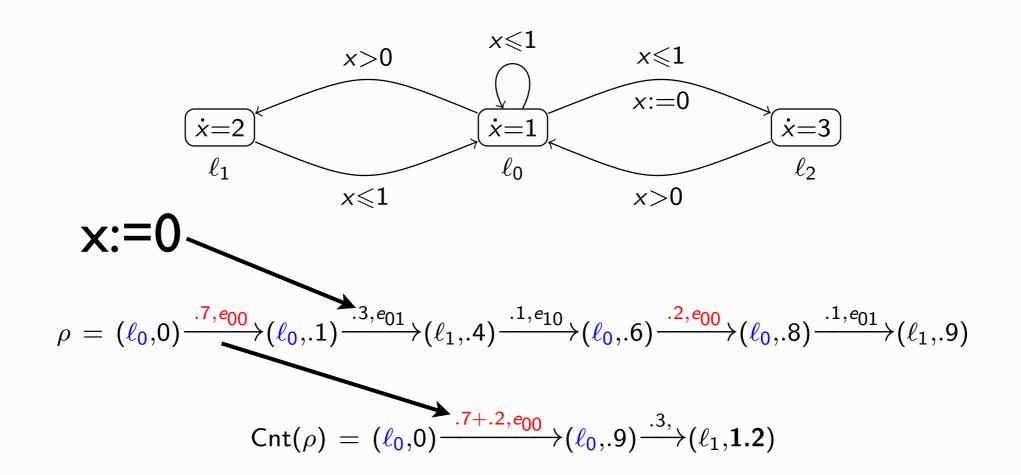
The value of the variables are not necessarily preserved...

Solution

Do not contract transitions occurring before and after the last reset.

Monday 3 October 2011

The contraction operation - Problem II



 $Cnt(\rho)$ is not necessarily a proper execution...

Solution

- Do not contract transitions occurring before and after the **first reset**.
- Ensure that the time spent along an execution is **short enough**.

Building a bounded witness

Ultimate Goal

Given ρ an execution of \mathcal{H} reaching ℓ_1 from (ℓ_0, x_0) within T time units. We want to build ρ' such that :

- an execution of \mathcal{H} reaching ℓ_1 from (ℓ_0, x_0) within \mathcal{T} time units,
- the number of transitions of ρ' is bounded by a constant depending only of \mathcal{H} and \mathcal{T} .

• Step 1 : Time-slicing

We can slice ρ is pieces whose duration is at most $\frac{1}{R_{max}}$.

At most $R_{max} \cdot T$ pieces.

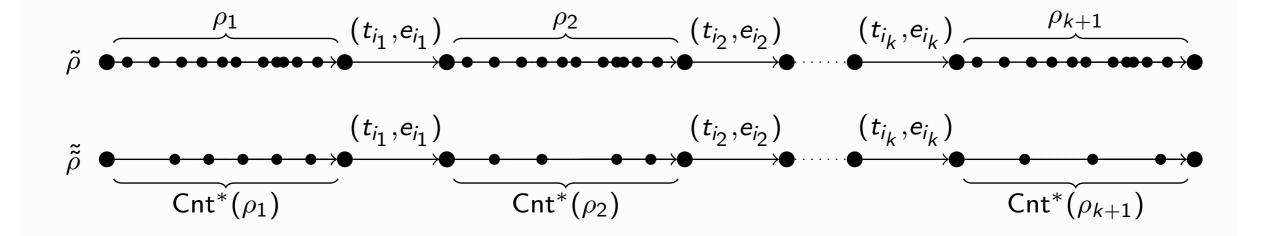
• Step 2 : First and Last reset-slicing

We can slice ρ according to the first an last resets of each clock.

At most $3 \cdot |X|$ pieces.

Building a bounded witness (continued)

• Step 3 : Application of the contraction :



- $\tilde{\tilde{\rho}}$ is a proper execution of \mathcal{H} .
- The variables have the same value at the end of $\tilde{\rho}$ and $\tilde{\tilde{
 ho}}$.

The contraction operation

$$\rho = \underbrace{(t_{1}, e_{1})}_{\rho[1:j-1]} \underbrace{(t_{j}, e_{j})}_{\ell} \underbrace{(t_{k}, e_{k})}_{\rho[j:k]} \underbrace{(t_{j'}, e_{j'})}_{\ell} \underbrace{(t_{j'}, e_{j'})}_{\ell} \underbrace{(t_{k'}, e_{k'})}_{\rho[j':k']} \underbrace{\ell}_{\rho[k'+1:n]} \underbrace{\ell}_{\rho[k'+1:$$

 $|\operatorname{Cnt}^*(\rho)| \le |\operatorname{Loc}| \cdot (2^{(|\operatorname{Edges}|+1)} + 1),$

where $Cnt^{*}(\rho)$ is the fixed point obtained by iterating $Cnt(\cdot)$ to ρ .

Decision procedure for TBR

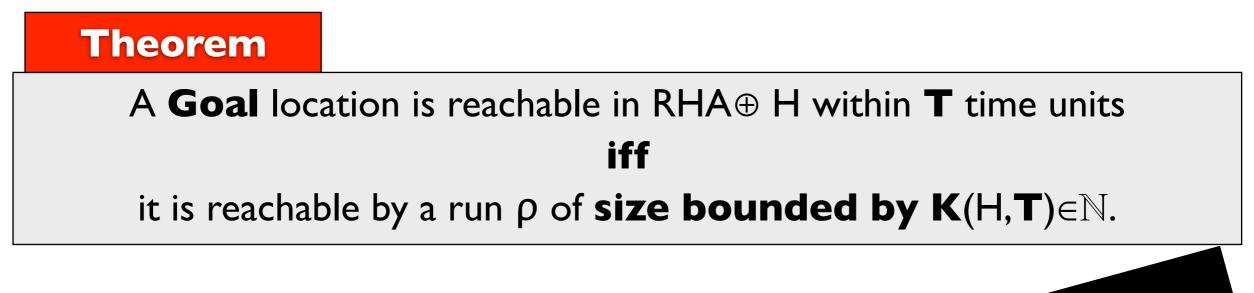
Theorem

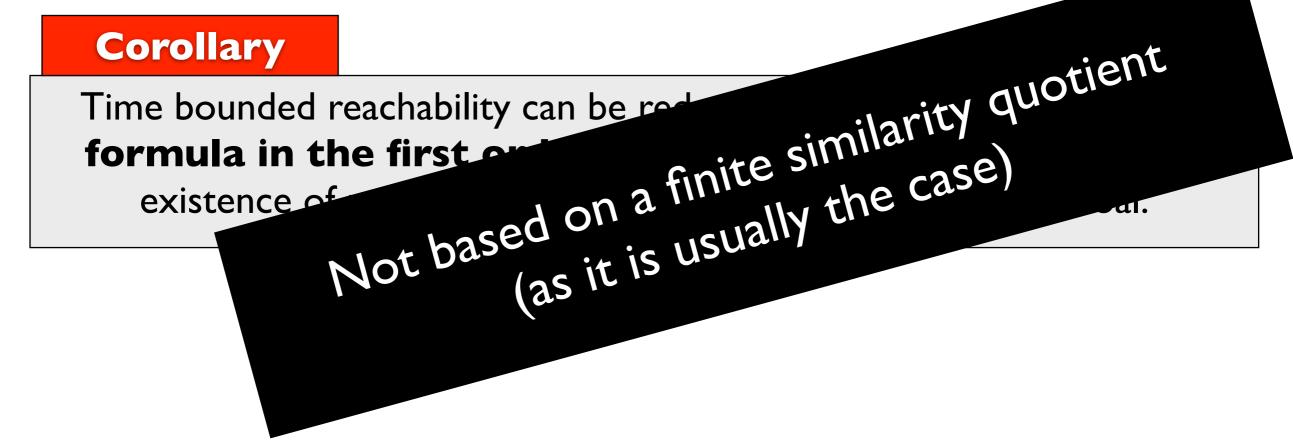
A Goal location is reachable in RHA \oplus H within T time units iff it is reachable by a run ρ of size bounded by K(H,T) $\in \mathbb{N}$.

Corollary

Time bounded reachability can be reduced to the **satisfiability** of a **formula in the first order theory of the reals** encoding the existence of runs of length at most **K**(H,**T**) that reaches Goal.

Decision procedure for TBR





- Negative rates lead to undecidability
- Diagonal constraints lead to undecidability

Decidability frontier

	Reach	Time-bounded Reach
Timed automata	ġ	₿g
Initialized RHA	<u>k</u>	B
RHA⊕	🦗 (Stopwatch)	<i>€</i>
RHA	<i>€®</i>	🖗 (neg. rates or diag.)
RHA LHA	Reference of the second	(neg. rates or diag.)

- Reachability analysis of hybrid automata have proven useful (embedded systems-protocols-biological systems-etc.)
- PhaVer and HyTech implements symbolic semi-algorithm for LHA-RHA
- PhaVer implements rectangular approximations of affine HA

Details: Laurent Doyen, Tom Henzinger, Jean-François Raskin. **Automatic Rectangular Refinement of Affine Hybrid Systems**. In FORMATS'05, Lecture Notes in Computer Science 3829, pp. 144--161, Springer-Verlag, 2005.

► **Time-bounded** reachability is **decidable** for RHA⊕ (2stopwatch HA)

Details: Thomas Brihaye, Gilles Geeraerts, Laurent Doyen, Joel Ouaknine, Jean-François Raskin and James Worrell. **On reachability for Hybrid Automata over Bounded Time**. In ICALP'11, LNCS 6756, Springer, pp. 416-427, 2011.