A Fully Symbolic Bisimulation Algorithm

Department of Computer Science University of California at Riverside

5th Workshop on Reachability Problems

Malcolm Mumme, Gianfranco Ciardo (UCR)

Fully Symbolic Bisimulation

RP 2011 1 / 56

Outline

- Abstract
- Background ۲

- Main Idea
- - Future Work

• Problem: bisimulation for asynchronous discrete-event models

- Limited to: systems with deterministic transitions
- Converted to reachability problem.
- Apply saturation heuristic
- For large quotient spaces: fastest symbolic bisimulation algorithm
- Bisimulation problem symbolically solvable for large quotient spaces, for deterministic systems with strong event locality.

- Problem: bisimulation for asynchronous discrete-event models
- Limited to: systems with deterministic transitions
- Converted to reachability problem.
- Apply saturation heuristic
- For large quotient spaces: fastest symbolic bisimulation algorithm
- Bisimulation problem symbolically solvable for large quotient spaces, for deterministic systems with strong event locality.

- Problem: bisimulation for asynchronous discrete-event models
- Limited to: systems with deterministic transitions
- Converted to reachability problem.
- Apply saturation heuristic
- For large quotient spaces: fastest symbolic bisimulation algorithm
- Bisimulation problem symbolically solvable for large quotient spaces, for deterministic systems with strong event locality.

.

- Problem: bisimulation for asynchronous discrete-event models
- Limited to: systems with deterministic transitions
- Converted to reachability problem.
- Apply saturation heuristic
- For large quotient spaces: fastest symbolic bisimulation algorithm
- Bisimulation problem symbolically solvable for large quotient spaces, for deterministic systems with strong event locality.

- B → - 4 B

- Problem: bisimulation for asynchronous discrete-event models
- Limited to: systems with deterministic transitions
- Converted to reachability problem.
- Apply saturation heuristic
- For large quotient spaces: fastest symbolic bisimulation algorithm
- Bisimulation problem symbolically solvable for large quotient spaces, for deterministic systems with strong event locality.

- Problem: bisimulation for asynchronous discrete-event models
- Limited to: systems with deterministic transitions
- Converted to reachability problem.
- Apply saturation heuristic
- For large quotient spaces: fastest symbolic bisimulation algorithm
- Bisimulation problem symbolically solvable for large quotient spaces, for deterministic systems with strong event locality.

Outline

- Abstract
- Background

Our Algorithm 2

- Our Contribution
- Main Idea
- Building the algorithm
- Results and Future Work 3
 - Performance Results
 - Discussion
 - Future Work

Outline

- Abstract
- Background

2 Our Algorithm

- Our Contribution
- Main Idea
- Building the algorithm
- 3 Results and Future Work
 - Performance Results
 - Discussion
 - Future Work

Transition Systems deterministic, colored, labeled (discrete),(DCLTS)

Definition

- A DCLTS (deterministic colored labeled transition system) is a tuple (S, S_{init}, E, T_E, C, c), where:
- S set of states • $S_{init} \subseteq S$ initial states • \mathcal{E} set of events (transition labels) • $\mathcal{T}_{\mathcal{E}} \subseteq S \times \mathcal{E} \times S$ labeled partial transitions $\mathcal{T}_{\alpha} : S \nrightarrow S$ $\langle s_1, \alpha, s_2 \rangle \in \mathcal{T}_{\mathcal{E}}$ also written: $s_1 \stackrel{\alpha}{\to} s_2$ • \mathcal{C} set of colors • $\mathcal{C} : S \rightarrow \mathcal{C}$ state coloring

< 47 ▶

.

Transition Systems deterministic, colored, labeled (discrete),(DCLTS)

Definition

 A DCLTS (deterministic colored labeled transition system) is a tuple (S, S_{init}, E, T_E, C, c), where: 	
• S	set of states
• $\mathcal{S}_{init} \subseteq \mathcal{S}$	initial states
• 8	set of <i>events</i> (transition labels)
• $\mathcal{T}_{\mathcal{E}} \subseteq \mathcal{S} imes \mathcal{E} imes \mathcal{S}$	labeled partial transitions
	$\mathcal{T}_{lpha}:\mathcal{S} eq\mathcal{S}$
	$\langle \boldsymbol{s}_1, \alpha, \boldsymbol{s}_2 \rangle \in \mathcal{T}_{\mathcal{E}}$ also written: $\boldsymbol{s}_1 \stackrel{\alpha}{\rightarrow} \boldsymbol{s}_2$
• C	set of colors
• $c: S \to C$	state coloring

Transition Systems deterministic, colored, labeled (discrete),(DCLTS)

Definition

 A DCLTS (deterministic colored labeled transition system) is a tuple (S, S_{init}, E, T_E, C, c), where: 	
• <i>S</i>	set of states
• $S_{init} \subseteq S$	initial states
• E	set of <i>events</i> (transition labels)
• $\mathcal{T}_{\mathcal{E}} \subseteq \mathcal{S} imes \mathcal{E} imes \mathcal{S}$	labeled partial transitions
	$\mathcal{T}_{lpha}:\mathcal{S} eq\mathcal{S}$
	$\langle \boldsymbol{s_1}, \alpha, \boldsymbol{s_2} \rangle \in \mathcal{T}_{\mathcal{E}}$ also written: $\boldsymbol{s_1} \stackrel{\alpha}{\rightarrow} \boldsymbol{s_2}$
• C	set of colors
• $\mathbf{C}: \mathcal{S} \to \mathcal{C}$	state coloring

Transition Systems deterministic, colored, labeled (discrete),(DCLTS)

Definition

 A DCLTS (deterministic 	c colored labeled transition system) is a
tuple $\langle S, S_{init}, E, T_{\mathcal{E}}, C, c \rangle$, wh	nere:
• 8	set of states
• $\mathcal{S}_{\textit{init}} \subseteq \mathcal{S}$	initial states
• 8	set of <i>events</i> (transition labels)
• $\mathcal{T}_{\mathcal{E}} \subseteq \mathcal{S} imes \mathcal{E} imes \mathcal{S}$	labeled partial transitions
	$\mathcal{T}_{lpha}:\mathcal{S} eq\mathcal{S}$
	$\langle \boldsymbol{s_1}, \alpha, \boldsymbol{s_2} \rangle \in \mathcal{T}_{\mathcal{E}}$ also written: $\boldsymbol{s_1} \stackrel{lpha}{ ightarrow} \boldsymbol{s_2}$
• C	set of colors
• $c: S \to C$	state coloring

Transition Systems deterministic, colored, labeled (discrete),(DCLTS)

Definition

A DCLTS (deterministic colored labeled transition system) is a tuple $\langle S, S_{init}, \mathcal{E}, \mathcal{T}_{\mathcal{E}}, \mathcal{C}, \mathbf{c} \rangle$, where: • S set of states initial states • $S_{init} \subset S$ • E set of *events* (transition labels) • $\mathcal{T}_{\mathcal{E}} \subset \mathcal{S} \times \mathcal{E} \times \mathcal{S}$ labeled partial transitions $\mathcal{T}_{\alpha}: \mathcal{S} \nrightarrow \mathcal{S}$ $\langle s_1, \alpha, s_2 \rangle \in \mathcal{T}_{\mathcal{E}}$ also written: $s_1 \stackrel{\alpha}{\rightarrow} s_2$

★ ∃ →

Transition Systems deterministic, colored, labeled (discrete),(DCLTS)

Definition

A DCLTS (deterministic colored labeled transition system) is a tuple $\langle S, S_{init}, \mathcal{E}, \mathcal{T}_{\mathcal{E}}, \mathcal{C}, \mathbf{c} \rangle$, where: • S set of states initial states • $S_{init} \subset S$ • E set of *events* (transition labels) • $\mathcal{T}_{\mathcal{E}} \subset \mathcal{S} \times \mathcal{E} \times \mathcal{S}$ labeled partial transitions $\mathcal{T}_{\alpha}: \mathcal{S} \nrightarrow \mathcal{S}$ $\langle s_1, \alpha, s_2 \rangle \in \mathcal{T}_{\mathcal{E}}$ also written: $s_1 \stackrel{\alpha}{\rightarrow} s_2$ • C set of colors

★ ∃ →

Transition Systems deterministic, colored, labeled (discrete),(DCLTS)

Definition

A DCLTS (deterministic colored labeled transition system) is a tuple $\langle S, S_{init}, \mathcal{E}, \mathcal{T}_{\mathcal{E}}, \mathcal{C}, \mathbf{c} \rangle$, where: • S set of states initial states • $S_{init} \subset S$ • E set of *events* (transition labels) labeled partial transitions • $\mathcal{T}_{\mathcal{E}} \subset \mathcal{S} \times \mathcal{E} \times \mathcal{S}$ $\mathcal{T}_{\alpha}: \mathcal{S} \nrightarrow \mathcal{S}$ $\langle s_1, \alpha, s_2 \rangle \in \mathcal{T}_{\mathcal{E}}$ also written: $s_1 \stackrel{\alpha}{\rightarrow} s_2$ • C set of colors • $c: S \to C$ state coloring

Background

The (largest) bisimulation \sim

Definition

Given a DCLTS ⟨S, S_{init}, E, T_E, C, c⟩, S_{init} ⊆ S, T_E ⊆ S × E × S, T_α : S → S, c : S → C
~ largest equivalence relation B ⊆ S × S where: Each pair in B has the same color, and ∀⟨p, q⟩ ∈ B: c(p) = c(q)
also has matching transitions to pairs in B ∀⟨p, q⟩ ∈ B: ∀α ∈ E, ∀p' ∈ S, (p → p' ⇒ ∃q' ∈ S, q → q' ∧ ⟨p', q'⟩ ∈ B)

Background

The (largest) bisimulation \sim

Definition

Given a DCLTS ⟨S, S_{init}, E, T_E, C, c⟩, S_{init} ⊆ S, T_E ⊆ S × E × S, T_α : S → S, c : S → C
~ largest equivalence relation B ⊆ S × S where: Each pair in B has the same color, and ∀⟨p, q⟩ ∈ B: c(p) = c(q)
also has matching transitions to pairs in B ∀⟨p, q⟩ ∈ B: ∀α ∈ E, ∀p' ∈ S, (p → p' ⇒ ∃q' ∈ S, q → q' ∧ ⟨p', q'⟩ ∈ B)

Malcolm Mumme, Gianfranco Ciardo (UCR)

Background

The (largest) bisimulation \sim

Definition

Given a DCLTS ⟨S, S_{init}, E, T_E, C, c⟩, S_{init} ⊆ S, T_E ⊆ S × E × S, T_α : S → S, c : S → C
~ largest equivalence relation B ⊆ S × S where: Each pair in B has the same color, and ∀⟨p, q⟩ ∈ B: c(p) = c(q)
also has matching transitions to pairs in B ∀⟨p, q⟩ ∈ B: ∀α ∈ E, ∀p' ∈ S, (p → p' ⇒ ∃q' ∈ S, q → q' ∧ ⟨p', q'⟩ ∈ B)

Malcolm Mumme, Gianfranco Ciardo (UCR)

Background

The (largest) bisimulation \sim

Definition

Given a DCLTS ⟨S, S_{init}, E, T_E, C, c⟩, S_{init} ⊆ S, T_E ⊆ S × E × S, T_α : S → S, c : S → C
~ largest equivalence relation B ⊆ S × S where: Each pair in B has the same color, and ∀⟨p, q⟩ ∈ B: c(p) = c(q)
also has matching transitions to pairs in B ∀⟨p, q⟩ ∈ B: ∀α ∈ E, ∀p' ∈ S, (p → p' ⇒ ∃q' ∈ S, q → q' ∧ ⟨p', q'⟩ ∈ B)

Preliminaries Ba

Background

Matching Transitions to Pairs in \mathcal{B} .

$$\begin{array}{l} \forall \langle \boldsymbol{p}, \boldsymbol{q} \rangle \in \mathcal{B}: \\ \forall \alpha \in \mathcal{E}, \forall \boldsymbol{p}' \in \mathcal{S}, (\boldsymbol{p} \stackrel{\alpha}{\rightarrow} \boldsymbol{p}' \Rightarrow \exists \boldsymbol{q}' \in \mathcal{S}, \boldsymbol{q} \stackrel{\alpha}{\rightarrow} \boldsymbol{q}' \land \langle \boldsymbol{p}', \boldsymbol{q}' \rangle \in \mathcal{B}) \end{array}$$

A D M A A A M M

- 4 ∃ →

Extensional notion of equivalence of states in automata

- O(m log n) time algorithm (Paige & Tarjan '87)
- O(m) time for single function coarsest partition (& Bonic '85)
- no cycles $\rightarrow O(m)$
- Explicit: data structures ↔ edges, nodes
- Symbolic: Decision Diagrams ↔ tuplesets
 - Bouali and Di Simone '92
 - Dovier, Piazza, and Policriti '04
 - Wimmer, Herbstritt, and Becker '07
 - This paper '11

→ ∃ →

- Extensional notion of equivalence of states in automata
- O(m log n) time algorithm (Paige & Tarjan '87)
- O(m) time for single function coarsest partition (& Bonic '85)
- no cycles $\rightarrow O(m)$
- Explicit: data structures ↔ edges, nodes
- Symbolic: Decision Diagrams ↔ tuplesets
 - Bouali and Di Simone '92
 - Dovier, Piazza, and Policriti '04
 - Wimmer, Herbstritt, and Becker '07
 - This paper '11

★ ∃ ► ★

- Extensional notion of equivalence of states in automata
- O(m log n) time algorithm (Paige & Tarjan '87)
- O(m) time for single function coarsest partition (& Bonic '85)
- no cycles $\rightarrow O(m)$
- Explicit: data structures ↔ edges, nodes
- Symbolic: Decision Diagrams ↔ tuplesets
 - Bouali and Di Simone '92
 - Dovier, Piazza, and Policriti '04
 - Wimmer, Herbstritt, and Becker '07
 - This paper '11

- Extensional notion of equivalence of states in automata
- O(*m* log *n*) time algorithm (Paige & Tarjan '87)
- O(*m*) time for single function coarsest partition (& Bonic '85)
- no cycles \rightarrow O(*m*)
- Explicit: data structures ↔ edges, nodes
- Symbolic: Decision Diagrams ↔ tuplesets
 - Bouali and Di Simone '92
 - Dovier, Piazza, and Policriti '04
 - Wimmer, Herbstritt, and Becker '07
 - This paper '11

- Extensional notion of equivalence of states in automata
- O(m log n) time algorithm (Paige & Tarjan '87)
- O(m) time for single function coarsest partition (& Bonic '85)
- no cycles \rightarrow O(*m*)
- Explicit: data structures ↔ edges, nodes
- Symbolic: Decision Diagrams ↔ tuplesets
 - Bouali and Di Simone '92
 - Dovier, Piazza, and Policriti '04
 - Wimmer, Herbstritt, and Becker '07
 - This paper '11

- Extensional notion of equivalence of states in automata
- O(m log n) time algorithm (Paige & Tarjan '87)
- O(m) time for single function coarsest partition (& Bonic '85)
- no cycles \rightarrow O(*m*)
- Explicit: data structures ↔ edges, nodes
- Symbolic: Decision Diagrams ↔ tuplesets
 - Bouali and Di Simone '92
 - Dovier, Piazza, and Policriti '04
 - Wimmer, Herbstritt, and Becker '07
 - This paper '11

- Extensional notion of equivalence of states in automata
- O(m log n) time algorithm (Paige & Tarjan '87)
- O(m) time for single function coarsest partition (& Bonic '85)
- no cycles \rightarrow O(*m*)
- Explicit: data structures \leftrightarrow edges, nodes
- Symbolic: Decision Diagrams ↔ tuplesets
 - Bouali and Di Simone '92
 - Dovier, Piazza, and Policriti '04
 - Wimmer, Herbstritt, and Becker '07
 - This paper '11

- Extensional notion of equivalence of states in automata
- O(m log n) time algorithm (Paige & Tarjan '87)
- O(m) time for single function coarsest partition (& Bonic '85)
- no cycles \rightarrow O(*m*)
- Explicit: data structures \leftrightarrow edges, nodes
- Symbolic: Decision Diagrams ↔ tuplesets
 - Bouali and Di Simone '92
 - Dovier, Piazza, and Policriti '04
 - Wimmer, Herbstritt, and Becker '07
 - This paper '11

- Extensional notion of equivalence of states in automata
- O(m log n) time algorithm (Paige & Tarjan '87)
- O(m) time for single function coarsest partition (& Bonic '85)
- no cycles \rightarrow O(*m*)
- Explicit: data structures ↔ edges, nodes
- Symbolic: Decision Diagrams ↔ tuplesets
 - Bouali and Di Simone '92
 - Dovier, Piazza, and Policriti '04
 - Wimmer, Herbstritt, and Becker '07
 - This paper '11

- Extensional notion of equivalence of states in automata
- O(m log n) time algorithm (Paige & Tarjan '87)
- O(m) time for single function coarsest partition (& Bonic '85)
- no cycles \rightarrow O(*m*)
- Explicit: data structures ↔ edges, nodes
- Symbolic: Decision Diagrams ↔ tuplesets
 - Bouali and Di Simone '92
 - Dovier, Piazza, and Policriti '04
 - Wimmer, Herbstritt, and Becker '07
 - This paper '11

Background

Quasi-Reduced Multi-Way Decision Diagrams QMDDs

Malcolm Mumme, Gianfranco Ciardo (UCR)

< 🗇 🕨 < 🖃 🕨

QMDDs Represent Relations (Tuple-Sets)

Preliminaries

- Each path in MDD (graph) corresponds to tuple in relation.
- Canonical: sharing ↔ compression, comparison, *unique* table, non-mutable.

Background

- Set operations implemented in SMART MDD library.
- Efficient memoized recursive algorithms for set operations:
 (|()|, ∪, ∩, ∖, ⊆).
- Efficient memoized recursive algorithms for functional operations: (\exists , \forall , ×, ∘, ()⁻¹).
- SMART Saturation-based state-space generation.
- Variable ordering matters.

QMDDs Represent Relations (Tuple-Sets)

• Each path in MDD (graph) corresponds to tuple in relation.

- Canonical: sharing ↔ compression, comparison, *unique* table, non-mutable.
- Set operations implemented in SMART MDD library.
- Efficient memoized recursive algorithms for set operations:
 (|()|, ∪, ∩, ∖, ⊆).
- Efficient memoized recursive algorithms for functional operations:
 (∃, ∀, ×, ∘, ()⁻¹).
- SMART Saturation-based state-space generation.
- Variable ordering matters.

QMDDs Represent Relations (Tuple-Sets)

Preliminaries

- Each path in MDD (graph) corresponds to tuple in relation.
- Canonical: sharing ↔ compression, comparison, *unique* table, non-mutable.

Background

- Set operations implemented in SMART MDD library.
- Efficient memoized recursive algorithms for set operations:
 (|()|, ∪, ∩, ∖, ⊆).
- Efficient memoized recursive algorithms for functional operations:
 (∃, ∀, ×, ∘, ()⁻¹).
- SMART Saturation-based state-space generation.
- Variable ordering matters.
Preliminaries

- Each path in MDD (graph) corresponds to tuple in relation.
- Canonical: sharing ↔ compression, comparison, *unique* table, non-mutable.

Background

- Set operations implemented in SMART MDD library.
- Efficient memoized recursive algorithms for set operations:
 (|()|, ∪, ∩, ∖, ⊆).
- Efficient memoized recursive algorithms for functional operations:
 (∃, ∀, ×, ∘, ()⁻¹).
- SMART Saturation-based state-space generation.
- Variable ordering matters.

Preliminaries

- Each path in MDD (graph) corresponds to tuple in relation.
- Canonical: sharing ↔ compression, comparison, *unique* table, non-mutable.

Background

- Set operations implemented in SMART MDD library.
- Efficient memoized recursive algorithms for set operations: ($|()|, \cup, \cap, \setminus, \subseteq$).
- Efficient memoized recursive algorithms for functional operations: (∃, ∀, ×, ∘, ()⁻¹).
- SMART Saturation-based state-space generation.
- Variable ordering matters.

Preliminaries

- Each path in MDD (graph) corresponds to tuple in relation.
- Canonical: sharing ↔ compression, comparison, *unique* table, non-mutable.

Background

- Set operations implemented in SMART MDD library.
- Efficient memoized recursive algorithms for set operations:
 (|()|, ∪, ∩, ∖, ⊆).
- Efficient memoized recursive algorithms for functional operations: (\exists , \forall , \times , \circ , ()⁻¹).
- SMART Saturation-based state-space generation.
- Variable ordering matters.

Preliminaries

- Each path in MDD (graph) corresponds to tuple in relation.
- Canonical: sharing ↔ compression, comparison, *unique* table, non-mutable.

Background

- Set operations implemented in SMART MDD library.
- Efficient memoized recursive algorithms for set operations:
 (|()|, ∪, ∩, ∖, ⊆).
- Efficient memoized recursive algorithms for functional operations: (\exists , \forall , \times , \circ , ()⁻¹).
- SMART Saturation-based state-space generation.
- Variable ordering matters.

Preliminaries

- Each path in MDD (graph) corresponds to tuple in relation.
- Canonical: sharing ↔ compression, comparison, *unique* table, non-mutable.

Background

- Set operations implemented in SMART MDD library.
- Efficient memoized recursive algorithms for set operations:
 (|()|, ∪, ∩, ∖, ⊆).
- Efficient memoized recursive algorithms for functional operations: (\exists , \forall , \times , \circ , ()⁻¹).
- SMART Saturation-based state-space generation.
- Variable ordering matters.

Background

Variable Ordering Matters (1)

Background

Variable Ordering Matters (2)

Background

Variable Ordering Matters (3)

э

• • • • • • • • • • • • •

Background

Variable Ordering Matters (4)

Background

Variable Ordering Matters (5)

Background

Variable Ordering Matters (6)

• • • • • • • • • • • • •

э

Background

Variable Ordering Matters (7)

イロト イ団ト イヨト イヨ

Set Closure (reachability in a finite space \hat{S})

Given: $\mathcal{T}_{\mathcal{E}} \subseteq \hat{\mathcal{S}} \times \hat{\mathcal{S}}$ Given: $\mathcal{S}_{init} \subseteq \hat{\mathcal{S}}$ Returns: $\mathcal{S} \subseteq \hat{\mathcal{S}} = (\bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^* (\mathcal{S}_{init})$

indexed set of transition relations set of initial states states reachable from S_{init} by transitions $T_{\mathcal{E}}$

Breadth-first algorithm:

- $(\bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^*(\mathcal{S}_{init})$ (the final result) is often more compact than $(I \cup \bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^n(\mathcal{S}_{init})$ (the *n*'th intermediate result), for most small *n*.
- Transition relations often have limited support (set of relevant variables).

Top variable of transitions is widely distributed;

- Variable ordering matters.
- Saturation assumptions:
 - Symbolic representation of states with K variables $\hat{S} = S_K \times \cdots \times S_1$
 - Partition *T* into ⋃_{α∈ε} *T*_α so that *E* = *K*...1 and the support of *T*_α is within variables α...1
 - \mathcal{T}'_{α} (with domain $\mathcal{S}_{\alpha} \times \cdots \times \mathcal{S}_{1}$) is available in interleaved form

- $(\bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^*(\mathcal{S}_{init})$ (the final result) is often more compact than $(I \cup \bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^n(\mathcal{S}_{init})$ (the *n*'th intermediate result), for most small *n*.
- Transition relations often have limited support (set of relevant variables).

Top variable of transitions is widely distributed;

- Variable ordering matters.
- Saturation assumptions:
 - Symbolic representation of states with K variables $\hat{S} = S_K \times \cdots \times S_1$
 - Partition *T* into ⋃_{α∈ε} *T*_α so that ε = K...1 and the support of *T*_α is within variables α...1
 - \mathcal{T}'_{α} (with domain $\mathcal{S}_{\alpha} \times \cdots \times \mathcal{S}_{1}$) is available in interleaved form

- $(\bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^*(\mathcal{S}_{init})$ (the final result) is often more compact than $(I \cup \bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^n(\mathcal{S}_{init})$ (the *n*'th intermediate result), for most small *n*.
- Transition relations often have limited support (set of relevant variables).

Top variable of transitions is widely distributed;

- Variable ordering matters.
- Saturation assumptions:
 - Symbolic representation of states with K variables $\hat{S} = S_K \times \cdots \times S_1$
 - Partition *T* into ⋃_{α∈ε} *T*_α so that ε = K...1 and the support of *T*_α is within variables α...1
 - \mathcal{T}'_{α} (with domain $\mathcal{S}_{\alpha} \times \cdots \times \mathcal{S}_{1}$) is available in interleaved form

- $(\bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^*(\mathcal{S}_{init})$ (the final result) is often more compact than $(I \cup \bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^n(\mathcal{S}_{init})$ (the *n*'th intermediate result), for most small *n*.
- Transition relations often have limited support (set of relevant variables).

Top variable of transitions is widely distributed;

- Variable ordering matters.
- Saturation assumptions:
 - Symbolic representation of states with *K* variables $\hat{S} = S_K \times \cdots \times S_1$
 - Partition \mathcal{T} into $\bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha}$ so that $\mathcal{E} = K \dots 1$ and the support of \mathcal{T}_{α} is within variables $\alpha \dots 1$
 - \mathcal{T}'_{α} (with domain $\mathcal{S}_{\alpha} \times \cdots \times \mathcal{S}_{1}$) is available in interleaved form

(4) (3) (4) (4) (4)

- $(\bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^*(\mathcal{S}_{init})$ (the final result) is often more compact than $(I \cup \bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^n(\mathcal{S}_{init})$ (the *n*'th intermediate result), for most small *n*.
- Transition relations often have limited support (set of relevant variables).

Top variable of transitions is widely distributed;

- Variable ordering matters.
- Saturation assumptions:
 - Symbolic representation of states with *K* variables $\hat{S} = S_K \times \cdots \times S_1$
 - Partition \mathcal{T} into $\bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha}$ so that $\mathcal{E} = K \dots 1$ and the support of \mathcal{T}_{α} is within variables $\alpha \dots 1$
 - \mathcal{T}'_{α} (with domain $\mathcal{S}_{\alpha} \times \cdots \times \mathcal{S}_{1}$) is available in interleaved form

A B b 4 B b

- $(\bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^*(\mathcal{S}_{init})$ (the final result) is often more compact than $(I \cup \bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^n(\mathcal{S}_{init})$ (the *n*'th intermediate result), for most small *n*.
- Transition relations often have limited support (set of relevant variables).

Top variable of transitions is widely distributed;

- Variable ordering matters.
- Saturation assumptions:
 - Symbolic representation of states with *K* variables $\hat{S} = S_K \times \cdots \times S_1$
 - Partition \mathcal{T} into $\bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha}$ so that $\mathcal{E} = K \dots 1$ and the support of \mathcal{T}_{α} is within variables $\alpha \dots 1$
 - \mathcal{T}'_{α} (with domain $\mathcal{S}_{\alpha} \times \cdots \times \mathcal{S}_{1}$) is available in interleaved form

★ ∃ > < ∃ >

- $(\bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^*(\mathcal{S}_{init})$ (the final result) is often more compact than $(I \cup \bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha})^n(\mathcal{S}_{init})$ (the *n*'th intermediate result), for most small *n*.
- Transition relations often have limited support (set of relevant variables).

Top variable of transitions is widely distributed;

- Variable ordering matters.
- Saturation assumptions:
 - Symbolic representation of states with *K* variables $\hat{S} = S_K \times \cdots \times S_1$
 - Partition \mathcal{T} into $\bigcup_{\alpha \in \mathcal{E}} \mathcal{T}_{\alpha}$ so that $\mathcal{E} = K \dots 1$ and the support of \mathcal{T}_{α} is within variables $\alpha \dots 1$
 - \mathcal{T}'_{α} (with domain $\mathcal{S}_{\alpha} \times \cdots \times \mathcal{S}_{1}$) is available in interleaved form

∃ ► < ∃ ►</p>

Preliminaries Set Closure (reachability in a finite space \hat{S})

Given: $\mathcal{T}'_{K,1} \subseteq \hat{\mathcal{S}} \times \hat{\mathcal{S}}$ indexed set of transition relations Given: $S_{init} \subset \hat{S}$ set of initial states Returns: $\mathcal{S} \subseteq \hat{\mathcal{S}} = (\bigcup_{\alpha \in K} \mathcal{T}_{\alpha})^* (\mathcal{S}_{init})$ states reachable from S_{init} by transitions $\mathcal{T}_{\mathcal{E}}$

Background

First call saturation based algorithm: SatClosure($\mathcal{T}'_{K-1}, \mathcal{S}_{init}$) Saturation-based algorithm: (memoization code not shown)

Algorithm: SatClosure($\mathcal{T}'_{k-1}, \mathcal{S}_{init}$)

$$\mathcal{S}_{temp} \leftarrow \mathcal{S}_{init}$$

Repeat:

- For each child s_i of S_{temp} do: $s'_i \leftarrow \text{SatClosure}((\mathcal{T}'_{k-1:1}, s_i))$
- $S_{temp} \leftarrow$ new node with children s'_*
- $S_{temp} \leftarrow S_{temp} \cup \mathcal{T}'_k(S_{temp})$
- Until Stemp converges
 - Return: $S = S_{temp}$

Generic iterative *splitting* algorithm: Iterative update of some equivalence relation variable \mathcal{B} .

- Start with $\mathcal{B} = \text{coarsest partition of state space } \mathcal{S}, \, \mathcal{S} \times \mathcal{S} \ (\sim \subseteq \mathcal{B})$
- Initially split B based on state color
- Iteratively remove implausible members from B when required by definition of Bisimulation, by splitting B into smaller blocks.
 ∀α ∈ E, ∀p' ∈ S, (p → p' ⇒ ∃q' ∈ S, q → q' ∧ ⟨p', q'⟩ ∈ B)
- Iteration continues until all equivalence classes have been used as splitters.
- $|\mathcal{B}|$ shrinks monotonically

Generic iterative *splitting* algorithm:

Iterative update of some equivalence relation variable \mathcal{B} .

- Start with $\mathcal{B} = \text{coarsest partition of state space } \mathcal{S}, \, \mathcal{S} \times \mathcal{S} \ (\sim \subseteq \mathcal{B})$
- Initially split B based on state color
- Iteratively remove implausible members from B when required by definition of Bisimulation, by splitting B into smaller blocks.
 ∀α ∈ E, ∀p' ∈ S, (p → p' ⇒ ∃q' ∈ S, q → q' ∧ ⟨p', q'⟩ ∈ B)
- Iteration continues until all equivalence classes have been used as splitters.
- $|\mathcal{B}|$ shrinks monotonically

Generic iterative *splitting* algorithm:

Iterative update of some equivalence relation variable \mathcal{B} .

- Start with $\mathcal{B} = \text{coarsest partition of state space } \mathcal{S}, \mathcal{S} \times \mathcal{S} \ (\sim \subseteq \mathcal{B})$
- Initially split B based on state color
- Iteratively remove implausible members from B when required by definition of Bisimulation, by splitting B into smaller blocks.
 ∀α ∈ E, ∀p' ∈ S, (p → p' ⇒ ∃q' ∈ S, q → q' ∧ ⟨p', q'⟩ ∈ B)
- Iteration continues until all equivalence classes have been used as splitters.
- $|\mathcal{B}|$ shrinks monotonically

Generic iterative *splitting* algorithm:

Iterative update of some equivalence relation variable \mathcal{B} .

- Start with $\mathcal{B} = \text{coarsest partition of state space } \mathcal{S}, \mathcal{S} \times \mathcal{S} \ (\sim \subseteq \mathcal{B})$
- Initially split B based on state color
- Iteratively remove implausible members from B when required by definition of Bisimulation, by splitting B into smaller blocks.
 ∀α ∈ E, ∀p' ∈ S, (p → p' ⇒ ∃q' ∈ S, q → q' ∧ ⟨p', q'⟩ ∈ B)
- Iteration continues until all equivalence classes have been used as splitters.
- $|\mathcal{B}|$ shrinks monotonically

Preliminaries Ba

Background

Matching Transitions to Pairs in \mathcal{B} .

$$\begin{array}{l} \forall \langle \boldsymbol{p}, \boldsymbol{q} \rangle \in \mathcal{B}: \\ \forall \alpha \in \mathcal{E}, \forall \boldsymbol{p}' \in \mathcal{S}, (\boldsymbol{p} \stackrel{\alpha}{\rightarrow} \boldsymbol{p}' \Rightarrow \exists \boldsymbol{q}' \in \mathcal{S}, \boldsymbol{q} \stackrel{\alpha}{\rightarrow} \boldsymbol{q}' \land \langle \boldsymbol{p}', \boldsymbol{q}' \rangle \in \mathcal{B}) \end{array}$$

< 同 > < ∃ >

Background

Splitting (Contrapositive).

$$orall \langle oldsymbol{p}, oldsymbol{q}
angle \in \mathcal{B}$$
:
 $orall lpha \in \mathcal{E}, orall oldsymbol{p}' \in \mathcal{S}, (oldsymbol{p} \stackrel{lpha}{
ightarrow} oldsymbol{p}' \Rightarrow \exists oldsymbol{q}' \in \mathcal{S}, oldsymbol{q} \stackrel{lpha}{
ightarrow} oldsymbol{q}' \wedge \langle oldsymbol{p}', oldsymbol{q}'
angle \in \mathcal{B}$)

Outline

Preliminaries

- Abstract
- Background

Our Algorithm Our Contribution

- Our Contributio
- Main Idea
- Building the algorithm
- 3 Results and Future Work
 - Performance Results
 - Discussion
 - Future Work

э.

Interleaved partition representation necessary for large partitions

- Deterministic transitions temporary focus ↔ key realization
- Negative space (∼) Closure/Reachability problem
- Saturation ↔ Efficient Symbolic Heuristic

- Interleaved partition representation necessary for large partitions
- Deterministic transitions temporary focus ↔ key realization
- Negative space (∼) Closure/Reachability problem
- Saturation ↔ Efficient Symbolic Heuristic

- Interleaved partition representation necessary for large partitions
- Deterministic transitions temporary focus ↔ key realization
- Negative space (∼) Closure/Reachability problem
- Saturation ↔ Efficient Symbolic Heuristic

- Interleaved partition representation necessary for large partitions
- Deterministic transitions temporary focus ↔ key realization
- Negative space (∼) Closure/Reachability problem
- Saturation ↔ Efficient Symbolic Heuristic

Outline

- Abstract
- Background ۲

Our Algorithm 2

- Main Idea
- ۲
- - Future Work

Splitting.

Example

イロト イヨト イヨト イヨト

Splitting.

Example

・ロト ・ 四ト ・ ヨト ・ ヨト

Our Algorithm

Main Idea

Splitting with Deterministic Transitions (main idea).

Example

< 17 ▶
Our Algorithm

Main Idea

Splitting with Deterministic Transitions (simplified).

Example

< 🗇 🕨 < 🖃 >

Our Algorithm

Main Idea

Splitting with Deterministic Transitions (BPRR).

Our Algorithm

Main Idea

Splitting with Deterministic Transitions (BPRR).

Example

$$\mathcal{P}_{\alpha} = (\mathcal{T}_{\alpha} \times \mathcal{T}_{\alpha})^{-1} \qquad (\forall \alpha \in$$

 \mathcal{E})

Example

 $\mathcal{P} = \bigcup_{\alpha \in \mathcal{E}} \mathcal{P}_{\alpha}$

イロト イポト イヨト イヨ

Example

$$\begin{array}{cccc} \langle s_0 \sim s_0 \rangle \Rightarrow \langle s_0?s_1 \rangle & \Leftarrow \langle s_0?s_2 \rangle & \Leftarrow \langle s_0?s_3 \rangle & \Leftarrow \langle s_0?s_4 \rangle & \langle s_0?s_5 \rangle \\ \downarrow & & \uparrow & \uparrow \\ \langle s_1?s_0 \rangle & \langle s_1 \sim s_1 \rangle & \Leftarrow \langle s_1?s_2 \rangle & \langle s_1?s_3 \rangle \Rightarrow \langle s_1?s_4 \rangle & \Leftarrow \langle s_1 \not\sim s_5 \rangle \\ \uparrow & \uparrow & \downarrow & \uparrow & \uparrow \\ \langle s_2?s_0 \rangle & \langle s_2?s_1 \rangle \Rightarrow \langle s_2 \sim s_2 \rangle & \langle s_2?s_3 \rangle & \langle s_2?s_4 \rangle \Rightarrow \langle s_2?s_5 \rangle \\ \uparrow & & \downarrow & \uparrow & \downarrow \\ \langle s_3?s_0 \rangle \Rightarrow \langle s_3?s_1 \rangle & \Leftrightarrow \langle s_3?s_2 \rangle & \langle s_3 \sim s_3 \rangle \Rightarrow \langle s_3?s_4 \rangle \Rightarrow \langle s_3?s_5 \rangle \\ \uparrow & & \downarrow & \uparrow & \uparrow \\ \langle s_4?s_0 \rangle & \Leftarrow \langle s_4?s_1 \rangle & \Leftrightarrow \langle s_4?s_2 \rangle & \langle s_4?s_3 \rangle & \Leftarrow \langle s_4 \sim s_4 \rangle & \langle s_4?s_5 \rangle \\ \uparrow & & \downarrow & \downarrow & \uparrow & \uparrow \\ \langle s_5?s_0 \rangle & \Leftarrow \langle s_5 \not\sim s_1 \rangle & \langle s_5?s_2 \rangle \Rightarrow \langle s_5?s_3 \rangle & \Leftrightarrow \langle s_5?s_4 \rangle & \langle s_5 \sim s_5 \rangle \end{array}$$

 $\mathcal{P} = \bigcup_{\alpha \in \mathcal{E}} \mathcal{P}_{\alpha}$

Example

$$\begin{array}{cccc} \langle s_0 \sim s_0 \rangle \Rightarrow \langle s_0 \not\sim s_1 \rangle \ \Leftarrow \ \langle s_0 \not\sim s_2 \rangle \ \Leftarrow \ \langle s_0 \not\sim s_3 \rangle \ \Leftarrow \ \langle s_0 \not\sim s_4 \rangle & \langle s_0 \not\sim s_5 \rangle \\ \downarrow & \uparrow & \uparrow & \uparrow \\ \langle s_1 \not\sim s_0 \rangle & \langle s_1 \sim s_1 \rangle \ \Leftarrow \ \langle s_1 ? s_2 \rangle & \langle s_1 \not\sim s_3 \rangle \ \Rightarrow \ \langle s_1 \not\sim s_4 \rangle \ \Leftarrow \ \langle s_1 \not\sim s_5 \rangle \\ \uparrow & \uparrow & \downarrow & \uparrow & \uparrow \\ \langle s_2 \not\sim s_0 \rangle & \langle s_2 ? s_1 \rangle \ \Rightarrow \ \langle s_2 \sim s_2 \rangle & \langle s_2 \not\sim s_3 \rangle & \langle s_2 \not\sim s_4 \rangle \ \Rightarrow \ \langle s_2 \not\sim s_5 \rangle \\ \uparrow & \downarrow & \downarrow & \uparrow & \downarrow \\ \langle s_3 \not\sim s_0 \rangle \ \Rightarrow \ \langle s_3 \not\sim s_1 \rangle \ \Leftrightarrow \ \langle s_3 \not\sim s_2 \rangle & \langle s_3 \sim s_3 \rangle \ \Rightarrow \ \langle s_3 ? s_4 \rangle \ \Rightarrow \ \langle s_3 \not\sim s_5 \rangle \\ \uparrow & \downarrow & \uparrow & \uparrow & \downarrow \\ \langle s_4 \not\sim s_0 \rangle \ \Leftarrow \ \langle s_4 \not\sim s_1 \rangle \ \Leftrightarrow \ \langle s_4 \not\sim s_2 \rangle & \langle s_4 ? s_3 \rangle \ \Leftrightarrow \ \langle s_4 ? s_5 \rangle & \langle s_4 \not\sim s_4 \rangle & \langle s_4 \not\sim s_5 \rangle \\ \uparrow & \downarrow & \uparrow & \uparrow & \uparrow & \uparrow \\ \langle s_5 \not\sim s_0 \rangle \ \Leftarrow \ \langle s_5 \not\sim s_1 \rangle & \langle s_5 \not\sim s_2 \rangle \ \Rightarrow \ \langle s_5 \not\sim s_3 \rangle \ \Leftrightarrow \ \langle s_5 \not\sim s_4 \rangle & \langle s_5 \sim s_5 \rangle \end{array}$$

Use Saturation-based set closure.

Example

$$\begin{array}{cccc} \langle s_0 \sim s_0 \rangle \Rightarrow \langle s_0 \not\sim s_1 \rangle \ \Leftarrow \ \langle s_0 \not\sim s_2 \rangle \ \Leftarrow \ \langle s_0 \not\sim s_3 \rangle \ \Leftarrow \ \langle s_0 \not\sim s_4 \rangle & \langle s_0 \not\sim s_5 \rangle \\ \downarrow & \uparrow & \uparrow & \uparrow \\ \langle s_1 \not\sim s_0 \rangle & \langle s_1 \sim s_1 \rangle \ \Leftarrow \ \langle s_1 \sim s_2 \rangle & \langle s_1 \not\sim s_3 \rangle \Rightarrow \langle s_1 \not\sim s_4 \rangle \ \Leftarrow \ \langle s_1 \not\sim s_5 \rangle \\ \uparrow & \uparrow & \downarrow & \uparrow & \uparrow \\ \langle s_2 \not\sim s_0 \rangle & \langle s_2 \sim s_1 \rangle \Rightarrow \langle s_2 \sim s_2 \rangle & \langle s_2 \not\sim s_3 \rangle & \langle s_2 \not\sim s_4 \rangle \Rightarrow \langle s_2 \not\sim s_5 \rangle \\ \uparrow & \downarrow & \downarrow & \uparrow & \downarrow \\ \langle s_3 \not\sim s_0 \rangle \Rightarrow \langle s_3 \not\sim s_1 \rangle \Rightarrow \langle s_3 \not\sim s_2 \rangle & \langle s_3 \sim s_3 \rangle \Rightarrow \langle s_3 \sim s_4 \rangle \Rightarrow \langle s_3 \not\sim s_5 \rangle \\ \uparrow & \downarrow & \uparrow & \uparrow & \uparrow \\ \langle s_4 \not\sim s_0 \rangle \ \Leftarrow \ \langle s_4 \not\sim s_1 \rangle \Rightarrow \langle s_4 \not\sim s_2 \rangle & \langle s_4 \sim s_3 \rangle \ \Leftrightarrow \ \langle s_4 \not\sim s_5 \rangle \\ \uparrow & \downarrow & \downarrow & \uparrow & \downarrow \\ \langle s_5 \not\sim s_0 \rangle \ \leftarrow \ \langle s_5 \not\sim s_1 \rangle & \langle s_5 \not\sim s_2 \rangle \Rightarrow \langle s_5 \not\sim s_3 \rangle \Rightarrow \langle s_5 \not\sim s_4 \rangle & \langle s_5 \sim s_5 \rangle \end{array}$$

Only bisimilar pairs remain.

• • • • • • • • • • • • •

Example

$\langle s_0 \sim s_0 \rangle \Rightarrow$		\Leftarrow	\Leftarrow	\Leftarrow		
\Downarrow			\Downarrow		↑	↑
	$\langle s_1 \sim s_1 \rangle$	$\langle s_1 \sim s_2 \rangle$		\Rightarrow		\Leftarrow
↑	↑	\Downarrow	\uparrow		\uparrow	
	$\langle s_2 \sim s_1 \rangle$	$\Rightarrow \langle s_2 \sim s_2 \rangle$				\Rightarrow
↑						\Downarrow
\Rightarrow		\Leftrightarrow	⟨ <i>s</i> ₃~s	$\langle \mathbf{s}_3 \rangle \Rightarrow \langle \mathbf{s}_3 \rangle$	$s_3 \sim s_4$	\Rightarrow
↑	\Downarrow		\Downarrow		↑	\uparrow
\Leftarrow		\Leftrightarrow	$\langle s_4 \sim s_4 \rangle$	$\langle \mathbf{s}_3 \rangle \ll \langle \mathbf{s}_3 \rangle$	$s_4 \sim s_4$	
	↑	\Downarrow	\Downarrow			
¢			\Rightarrow	\Leftrightarrow		$\langle s_5 \sim s_5 angle$

Only bisimilar pairs remain.

Outline

Preliminaries

- Abstract
- Background

2 Our Algorithm

- Our Contribution
- Main Idea
- Building the algorithm
- 3 Results and Future Work
 - Performance Results
 - Discussion
 - Future Work

Initial partition, then iterative splitting based on pair relations.
Two ways a pair may be non-bisimilar:

(initial)

Initial partition, then iterative splitting based on pair relations.
Two ways a pair may be non-bisimilar:

• (initial)

- Initial partition, then iterative splitting based on pair relations.
- Two ways a pair may be non-bisimilar:
- (initial)

•
$$\alpha \downarrow \qquad \alpha \downarrow \qquad \alpha \downarrow \qquad \Rightarrow \alpha \downarrow \qquad \alpha \downarrow \qquad \alpha \downarrow \qquad \Rightarrow \alpha \downarrow \qquad \alpha \downarrow$$

- Initial partition, then iterative splitting based on pair relations.
- Two ways a pair may be non-bisimilar:
- (initial)

•
$$\alpha \downarrow \qquad \alpha \downarrow \qquad \alpha \downarrow \qquad \Rightarrow \alpha \downarrow \qquad \alpha \downarrow \qquad \alpha \downarrow$$

Given bisimulation problem for DCLTS $\langle S, S_{init}, \mathcal{E}, \mathcal{T}_{\mathcal{E}}, \mathcal{C}, c \rangle$:

- Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq S \times S$ (and the corresponding $\mathcal{T}_{\mathcal{E}}'$)
- Construct new domain: $\hat{\mathcal{B}} = \mathcal{S} \times \mathcal{S}$
- Create BPRRs: $\mathcal{P}_{\mathcal{E}} \subseteq \hat{\mathcal{B}} \times \hat{\mathcal{B}}$.

•
$$\mathcal{P}_{\alpha}(\langle s_1, s_2 \rangle) = \text{pairs } \langle s_3, s_4 \rangle$$

where $s_1 = \mathcal{T}_{\alpha}(s_3) \land s_2 = \mathcal{T}_{\alpha}(s_4)$ $(\forall \alpha \in \mathcal{I}_{\alpha})$

•
$$\mathcal{P}_{\alpha} = (\mathcal{T}'_{\alpha} \times \mathcal{T}'_{\alpha})^{-1}$$
 $(\forall \alpha \in \mathcal{E})$

Given bisimulation problem for DCLTS $\langle S, S_{init}, \mathcal{E}, \mathcal{T}_{\mathcal{E}}, \mathcal{C}, c \rangle$:

- Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq \mathcal{S} \times \mathcal{S}$
- Construct new domain: $\hat{\mathcal{B}} = \mathcal{S} \times \mathcal{S}$
- Create BPRRs: $\mathcal{P}_{\mathcal{E}} \subseteq \hat{\mathcal{B}} \times \hat{\mathcal{B}}$.

•
$$\mathcal{P}_{\alpha}(\langle s_1, s_2 \rangle) = \text{pairs } \langle s_3, s_4 \rangle$$

where $s_1 = \mathcal{T}_{\alpha}(s_3) \land s_2 = \mathcal{T}_{\alpha}(s_4)$

•
$$\mathcal{P}_{\alpha} = (\mathcal{T}'_{\alpha} \times \mathcal{T}'_{\alpha})^{-1}$$
 $(\forall \alpha \in \mathcal{E})$

 $S, S_{init}, \mathcal{E}, \mathcal{T}_{\mathcal{E}}, \mathcal{C}, \mathbf{c} \rangle$:

(and the corresponding $\mathcal{T}'_{\mathcal{E}}$)

Given bisimulation problem for DCLTS $(S, S_{init}, \mathcal{E}, \mathcal{T}_{\mathcal{E}}, \mathcal{C}, c)$:

- Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq S \times S$ (and the corresponding $\mathcal{T}'_{\mathcal{E}}$)
- Construct new domain: $\hat{\mathcal{B}} = \mathcal{S} \times \mathcal{S}$
- Create BPRRs: $\mathcal{P}_{\mathcal{E}} \subseteq \hat{\mathcal{B}} \times \hat{\mathcal{B}}$.

•
$$\mathcal{P}_{\alpha}(\langle s_1, s_2 \rangle) = \text{pairs } \langle s_3, s_4 \rangle$$

where $s_1 = \mathcal{T}_{\alpha}(s_3) \land s_2 = \mathcal{T}_{\alpha}(s_4)$

•
$$\mathcal{P}_{\alpha} = (\mathcal{T}'_{\alpha} \times \mathcal{T}'_{\alpha})^{-1}$$
 $(\forall \alpha \in \mathcal{E})$

Given bisimulation problem for DCLTS $\langle S, S_{init}, \mathcal{E}, \mathcal{T}_{\mathcal{E}}, \mathcal{C}, c \rangle$:

- Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq S \times S$ (and the corresponding $\mathcal{T}'_{\mathcal{E}}$)
- Construct new domain: $\hat{\mathcal{B}} = \mathcal{S} \times \mathcal{S}$
- Create BPRRs: $\mathcal{P}_{\mathcal{E}} \subseteq \hat{\mathcal{B}} \times \hat{\mathcal{B}}$.

•
$$\mathcal{P}_{\alpha}(\langle s_1, s_2 \rangle) = \text{pairs } \langle s_3, s_4 \rangle$$

where $s_1 = \mathcal{T}_{\alpha}(s_3) \land s_2 = \mathcal{T}_{\alpha}(s_4)$ $(\forall \alpha \in \mathcal{E})$
• $\mathcal{P}_{\alpha} = (\mathcal{T}'_{\alpha} \times \mathcal{T}'_{\alpha})^{-1}$ $(\forall \alpha \in \mathcal{E})$

Given bisimulation problem for DCLTS $\langle S, S_{init}, \mathcal{E}, \mathcal{T}_{\mathcal{E}}, \mathcal{C}, c \rangle$:

- Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq S \times S$ (and the corresponding $\mathcal{T}'_{\mathcal{E}}$)
- Construct new domain: $\hat{\mathcal{B}} = \mathcal{S} \times \mathcal{S}$
- Create BPRRs: $\mathcal{P}_{\mathcal{E}} \subseteq \hat{\mathcal{B}} \times \hat{\mathcal{B}}$.
- $\mathcal{P}_{\alpha}(\langle s_1, s_2 \rangle) = \text{pairs } \langle s_3, s_4 \rangle$ where $s_1 = \mathcal{T}_{\alpha}(s_3) \land s_2 = \mathcal{T}_{\alpha}(s_4)$ • $\mathcal{P}_{\alpha} = (\mathcal{T}_{\alpha}' \times \mathcal{T}_{\alpha}')^{-1}$

 $(\forall \alpha \in \mathcal{E})$ $(\forall \alpha \in \mathcal{E})$

Given bisimulation problem for DCLTS $\langle S, S_{init}, \mathcal{E}, \mathcal{T}_{\mathcal{E}}, \mathcal{C}, \mathbf{c} \rangle$:

- Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq S \times S$ (and the corresponding $\mathcal{T}'_{\mathcal{E}}$)
- Construct new domain: $\hat{\mathcal{B}} = \mathcal{S} \times \mathcal{S}$
- Create BPRRs: $\mathcal{P}_{\mathcal{E}} \subseteq \hat{\mathcal{B}} \times \hat{\mathcal{B}}$.

•
$$\mathcal{P}_{\alpha}(\langle s_1, s_2 \rangle) = \text{pairs } \langle s_3, s_4 \rangle$$

where $s_1 = \mathcal{T}_{\alpha}(s_3) \land s_2 = \mathcal{T}_{\alpha}(s_4)$ $(\forall \alpha \in \mathcal{E})$

•
$$\mathcal{P}_{\alpha} = (\mathcal{T}'_{\alpha} \times \mathcal{T}'_{\alpha})^{-1}$$
 $(\forall \alpha \in \mathcal{E})$

Given bisimulation problem for DCLTS $\langle S, S_{init}, \mathcal{E}, \mathcal{T}_{\mathcal{E}}, \mathcal{C}, c \rangle$:

- Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq S \times S$, Pair domain: $\hat{\mathcal{B}} = S \times S$
- Partition according to coloring function
 c(s) = {α ∈ ε|∃s' ∈ S : ⟨s, s'⟩ ∈ T_α}
- Initial Partition: $\overline{\mathcal{B}}_{init} \subseteq \hat{\mathcal{B}}$, where only 1 member of each pair enables \mathcal{T}_{α} , for some $\alpha \in \mathcal{E}$.
- States where \mathcal{T}_{α} is enabled: $\mathcal{S}_{[\alpha]} = \{ s \in \mathcal{S} | \exists s' : \langle s, s' \rangle \in \mathcal{T}_{\alpha} \}.$
- Initial Partition: $\overline{\mathcal{B}}_{init} = \bigcup_{\alpha \in \mathcal{E}} (\mathcal{S}_{[\alpha]} \times (\mathcal{S} \setminus \mathcal{S}_{[\alpha]})) \cup ((\mathcal{S} \setminus \mathcal{S}_{[\alpha]}) \times \mathcal{S}_{[\alpha]})$.

Given bisimulation problem for DCLTS $\langle S, S_{init}, \mathcal{E}, \mathcal{T}_{\mathcal{E}}, \mathcal{C}, c \rangle$:

- Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq \mathcal{S} \times \mathcal{S}$, Pair domain: $\hat{\mathcal{B}} = \mathcal{S} \times \mathcal{S}$
- Partition according to coloring function $c(s) = \{ \alpha \in \mathcal{E} | \exists s' \in \mathcal{S} : \langle s, s' \rangle \in \mathcal{T}_{\alpha} \}$
- Initial Partition: $\overline{\mathcal{B}}_{init} \subseteq \hat{\mathcal{B}}$, where only 1 member of each pair enables \mathcal{T}_{α} , for some $\alpha \in \mathcal{E}$.
- States where \mathcal{T}_{α} is enabled: $\mathcal{S}_{[\alpha]} = \{ s \in \mathcal{S} | \exists s' : \langle s, s' \rangle \in \mathcal{T}_{\alpha} \}.$
- Initial Partition: $\overline{\mathcal{B}}_{init} = \bigcup_{\alpha \in \mathcal{E}} (\mathcal{S}_{[\alpha]} \times (\mathcal{S} \setminus \mathcal{S}_{[\alpha]})) \cup ((\mathcal{S} \setminus \mathcal{S}_{[\alpha]}) \times \mathcal{S}_{[\alpha]})$.

• Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq S \times S$, Pair domain: $\hat{\mathcal{B}} = S \times S$

- Partition according to coloring function $c(s) = \{ \alpha \in \mathcal{E} | \exists s' \in \mathcal{S} : \langle s, s' \rangle \in \mathcal{T}_{\alpha} \}$
- Initial Partition: $\overline{\mathcal{B}}_{init} \subseteq \hat{\mathcal{B}}$, where only 1 member of each pair enables \mathcal{T}_{α} , for some $\alpha \in \mathcal{E}$.
- States where \mathcal{T}_{α} is enabled: $\mathcal{S}_{[\alpha]} = \{ s \in \mathcal{S} | \exists s' : \langle s, s' \rangle \in \mathcal{T}_{\alpha} \}.$
- Initial Partition: $\overline{\mathcal{B}}_{init} = \bigcup_{\alpha \in \mathcal{E}} (\mathcal{S}_{[\alpha]} \times (\mathcal{S} \setminus \mathcal{S}_{[\alpha]})) \cup ((\mathcal{S} \setminus \mathcal{S}_{[\alpha]}) \times \mathcal{S}_{[\alpha]})$.

- Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq \mathcal{S} \times \mathcal{S}$, Pair domain: $\hat{\mathcal{B}} = \mathcal{S} \times \mathcal{S}$
- Partition according to coloring function $c(s) = \{ \alpha \in \mathcal{E} | \exists s' \in \mathcal{S} : \langle s, s' \rangle \in \mathcal{T}_{\alpha} \}$
- Initial Partition: B
 ⁱ β
 ⁱ μ
 ⁱ μ
- States where \mathcal{T}_{α} is enabled: $\mathcal{S}_{[\alpha]} = \{ s \in \mathcal{S} | \exists s' : \langle s, s' \rangle \in \mathcal{T}_{\alpha} \}.$

• Initial Partition: $\overline{\mathcal{B}}_{init} = \bigcup_{\alpha \in \mathcal{E}} (\mathcal{S}_{[\alpha]} \times (\mathcal{S} \setminus \mathcal{S}_{[\alpha]})) \cup ((\mathcal{S} \setminus \mathcal{S}_{[\alpha]}) \times \mathcal{S}_{[\alpha]})$.

- Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq \mathcal{S} \times \mathcal{S}$, Pair domain: $\hat{\mathcal{B}} = \mathcal{S} \times \mathcal{S}$
- Partition according to coloring function $c(s) = \{ \alpha \in \mathcal{E} | \exists s' \in \mathcal{S} : \langle s, s' \rangle \in \mathcal{T}_{\alpha} \}$
- Initial Partition: B
 *B*_{init} ⊆ β̂, where only 1 member of each pair enables T_α, for some α ∈ ε.
- States where \mathcal{T}_{α} is enabled: $\mathcal{S}_{[\alpha]} = \{ s \in \mathcal{S} | \exists s' : \langle s, s' \rangle \in \mathcal{T}_{\alpha} \}.$

• Initial Partition: $\overline{\mathcal{B}}_{init} = \bigcup_{\alpha \in \mathcal{E}} (\mathcal{S}_{[\alpha]} \times (\mathcal{S} \setminus \mathcal{S}_{[\alpha]})) \cup ((\mathcal{S} \setminus \mathcal{S}_{[\alpha]}) \times \mathcal{S}_{[\alpha]})$.

- Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq \mathcal{S} \times \mathcal{S}$, Pair domain: $\hat{\mathcal{B}} = \mathcal{S} \times \mathcal{S}$
- Partition according to coloring function $c(s) = \{ \alpha \in \mathcal{E} | \exists s' \in \mathcal{S} : \langle s, s' \rangle \in \mathcal{T}_{\alpha} \}$
- Initial Partition: B
 *B*_{init} ⊆ β̂, where only 1 member of each pair enables T_α, for some α ∈ ε.
- States where \mathcal{T}_{α} is enabled: $\mathcal{S}_{[\alpha]} = \{ s \in \mathcal{S} | \exists s' : \langle s, s' \rangle \in \mathcal{T}_{\alpha} \}.$
- Initial Partition: $\overline{\mathcal{B}}_{init} = \bigcup_{\alpha \in \mathcal{E}} (\mathcal{S}_{[\alpha]} \times (\mathcal{S} \setminus \mathcal{S}_{[\alpha]})) \cup ((\mathcal{S} \setminus \mathcal{S}_{[\alpha]}) \times \mathcal{S}_{[\alpha]})$.

Algorithm

- Given bisimulation problem for DCLTS ⟨S, S_{init}, E, T_E, C, c⟩:
- Transitions: $\mathcal{T}_{\mathcal{E}} \subseteq \mathcal{S} \times \mathcal{S}$

(and the corresponding $\mathcal{T}_{\mathcal{E}}'$)

・ロト ・ 同ト ・ ヨト ・ ヨ

Algorithm: Saturation $\overline{Bisimulation}(\mathcal{S}, \mathcal{T}'_{\mathcal{E}})$

• Define:
$$\hat{\mathcal{B}} = \mathcal{S} \times \mathcal{S}$$

• For
$$(lpha \in \mathcal{E})$$
 loop: $\mathcal{P}_{lpha} \leftarrow (\mathcal{T}'_{lpha} imes \mathcal{T}'_{lpha})^{-1}$

• For
$$(\beta \in K: 1)$$
 loop: $\mathcal{P}'_{2\beta} \leftarrow \bigcup_{\alpha \mid Top(\mathcal{T}_{\alpha}) = \beta} \mathcal{P}_{\alpha}$ merge by level

- Construct: $\overline{\mathcal{B}}_{init} \leftarrow \bigcup_{\alpha \in \mathcal{E}} (\mathcal{S}_{[\alpha]} \times (\mathcal{S} \setminus \mathcal{S}_{[\alpha]})) \cup ((\mathcal{S} \setminus \mathcal{S}_{[\alpha]}) \times \mathcal{S}_{[\alpha]})$ where $\mathcal{S}_{[\alpha]} = \{ \boldsymbol{s} \in \mathcal{S} | \exists \boldsymbol{s}' : \langle \boldsymbol{s}, \boldsymbol{s}' \rangle \in \mathcal{T}_{\alpha} \}.$
- $\overline{\sim} \leftarrow SatClosure(\mathcal{P}'_{[2K:1]}, \overline{\mathcal{B}}_{init})$
- Return: $\hat{\mathcal{B}} \setminus \overline{\sim}$

Outline

Preliminaries

- Abstract
- Background

2) Our Algorithm

- Our Contribution
- Main Idea
- Building the algorithm
- 3 Results and Future Work
 - Performance Results
 - Discussion
 - Future Work

Combined N token "Kanban" Model Results

Performance for kanban model bisimulation

Combined N process "Robin" Model Results

Performance for round-robin scheduler model bisimulation

Combined N process "Leader" Model Results

Performance for leader model bisimulation

Cascade model

イロト イポト イヨト イヨ

Combined 3 × N stage "Cascade" Model Results

Performance for cascade model bisimulation

Outline

Preliminaries

- Abstract
- Background

2) Our Algorithm

- Our Contribution
- Main Idea
- Building the algorithm

3 Results and Future Work

Performance Results

Discussion

Future Work

Discussion of Results

Qualitative evaluation of Quantitative results:

- Saturation performed well in all cases (especially Robin.).
- Inflated resource usage for our implementation of Wimmer's algorithm.
- Saturation is not necessarily always fastest.

Additional Thoughts:

- Additional optimizations are possible for our algorithm.
- Our implementation of Wimmer's algorithm needs adjustment.

Preliminaries

- Abstract
- Background

2) Our Algorithm

- Our Contribution
- Main Idea
- Building the algorithm

3 Results and Future Work

- Performance Results
- Discussion
- Future Work

Improvements to current work:

- Extend to non-deterministic transitions.
- "Weak" bisimulation (invisible transitions).
- SMART Additional optimization and tuning.
- Implementation of bisimulation algorithms in SMART
- Comparison using Petri net models.
- Obtained fully-symbolic algorithm with good performance even with many classes

Summary

Acknowledgement

This work was supported in part by the National Science Foundation under Grant CCF-1018057.

Malcolm Mumme, Gianfranco Ciardo (UCR)

Fully Symbolic Bisimulation

RP 2011 55 / 56

- 3 →

Summary

The End

fin

Malcolm Mumme, Gianfranco Ciardo (UCR)

Fully Symbolic Bisimulation

▲ ■ ▶ ■ • • ○ < ○RP 2011 56 / 56