A new weakly universal cellular automaton in the 3D hyperbolic space with two states

Maurice Margenstern

UPVM, Metz, LITA, EA 3097 LORIA, UMR 7503, CNRS **RP'2011**

September, 28-30, 2011

Genova, ITALY

in this talk:

- 1. recall from hyperbolic geometry
- 2. pentagrid and dodecagrid
- 3. CA's in the dodecagrid
- 4. railway simulation
- 5. strong/weak universality in CA's
- 6. a universal CA in the dodecagrid with 2 states

1. recall from hyperbolic geometry

a point A

a point Aa line ℓ

a secant through A which cuts ℓ

a **parallel** pto ℓ through A

another parallel q to ℓ

through A

 $\begin{array}{c}
 A \\
 p \\
 p \\
 P \\
\end{array}$

a non secant

line m to ℓ through A

the common perpendicular

to ℓ and to m

3. pentagrid and dodecagrid

in the Euclidean spaces,

the square and the cubic grids

here, this role played by

the **pentagrid** and the **dodecagrid**

the pentagrid

the simplest rectangular grid in the hyperbolic plane

the 3D hyperbolic space

extend Poincaré's disc model \mathcal{P} to Poincaré's ball model

points: the unit **open** ball points at infinity: unit sphere Splanes: trace of a diametral plane, copy of D, a sphere orthogonal to Slines: intersection of planes, each one in a diametral plane the 3D hyperbolic space

four tessellations one of them,

based on a dodecahedron,

extends the pentagrid to 3D:

the **dodecagrid**

the 3D hyperbolic space

important remark:

the trace of the dodecagrid on the plane of one of its faces is the pentagrid

the dodecagrid

projection onto the plane of face 0

the dodecagrid

a spanning tree defines the tiling too, generationg nodes:

4. CA's in the dodecagrid

CA's in the dodecagrid

neighbours of Δ : the cells which share a face with Δ the automaton is deterministic and rotation invariant:

if the neighbourhood is changed by a motion around Δ which keeps orientation, the new state is the same

CA's in the dodecagrid

```
format of a rule
```

fix a numbering of the faces, then:

 $\eta^0 \eta_0 \eta_1 \eta_2 \eta_3 \eta_4 \eta_5 \eta_6 \eta_7 \eta_8 \eta_9 \eta_{10} \eta_{11} \eta^1$ with: η^0 : current state of the cell η_i : state of neighbour *i*, the other cell sharing face *i* η^1 : new state of the cell, after applying the rule

 $\eta^0 \dots \eta_{11}$ is the **context** of the rule

numbering of the faces fixed,

enumerate all positive motions leaving Δ globally invariant

to each motion, associate the word obtained from

the rule once the motion applied to the cell, the numbering being still fixed

the minimal rotated form:

the rule whose associated word is lexicographically the smallest one

hence a test for rotation invariance lemma

a CA is rotationally invariant if and only if any pair of its rules giving rise to the same minimal rotated context give the same new state

enumerating the positive motions:

fix face 0 and face 1, say f_0 and f_1

orientation $\Rightarrow f_0, f_1$ enough to restore numbering

if $\rho = \rho(\Delta)$, ρ positive motion, then:

 $\rho(f_0)$ is any face: 12 choices and then $\rho(f_1)$ is any face sharing an edge with $\rho(f_0)$: 5 choices

hence 60 motions leaving Δ globally invariant

and we get an easy algorithm to check whether a CA in the dodecagrid is rotation invariant

the enumeration of the positive motions:

the positive motions leaving Δ globally invariant constitute a group of 60 elements

this group is isomorphic to A_5 , the group of permutations on 5 elements with positive signature

 A_5 is known to be **simple**, hence:

no nice decomposition, no easy representation

4. railway simulation

circuit in the tiling which consists of:

tracks crossings switches

a unique locomotive runs over the circuit

the switches

three types of them:

working of the switches

flip-flop: only active passage, triggers the change of selection

memory: selected track = last passive passage

it is known that by assembling switches and tracks, a **universal computation** can be simulated by the motion of the locomotive

implementation of the example in the pentagrid

5. strong/weak universality in CA's
strong/weak universality:

the issue is the initial configuration

strong universality:

the CA has a quiescent state q: a cell in q with all its neighbours in q remains in qinitial configuration: all cells are in q except, possibly, finitely many of them strong/weak universality:

weak universality:

the initial configuration may be **infinite** but, outside a bounded region, it must be regular:

finitely many directions in which the corresponding part of the configuration is invariant under some shift along this direction

6. a universal CA in the dodecagrid with 2 states

previous ones and this one:

mainly in a plane Π_0

use of 3D:

to replace crossings by bridges to differentiate the configurations of the switches

a general remark:

to reduce the number of states sophisticate the configurations

5 states (MM, 2004):

blank is white tracks are blue

2-celled locomotive, **green** and **red** replacing 2 cells of the tracks

neighbouring of the switch centre: 3D-decorations

3 states (MM, 2010),

new features:

tracks are white too, marked with **blue milestones**

2-celled locomotive, **blue** and **red** replacing 2 cells of the tracks

this implementation:

2 states, black and white world

new idea:

one way tracks

again white with black milestones

corollary:

new configuration of the switches

this implementation:

2 states, black and white world

another consequence:

there can no more be a front and a rear for the locomotive

the locomotive is reduced to a unique black cell: the particle

the new configuration of the switches:

- a remark:
 - introducing one way traks introduces a new distinction:
 - active and passive switches
- fixed switch: passive
 flip-flop: active
 memory switch: combination of
 both types

representation of parts of the circuit tracks bridges fixed switches flip-flop switches memory switches our implementation:
representations by a
special projection

our implementation: tracks

the idea:

milestones look like catenaries

same basis for the return track which is on the other half-space

tracks

two kinds of tracks to implement the circuit:

vertical and horizontal tracks

verticals:

they follow branches of a tree

horizontals:

they follow levels of a tree

our implementation: tracks

this induces two kinds of elements for the tracks:

straight element

corner

vertical tracks

horizontal tracks

our implementation: bridges

they replace crossings

we may assume the meeting of two vertical segments

one segment is unchanged

the other makes use of two bridges:

a bridge for one way the symmetric one for the return track

bridges illustration of their ends

fixed switches

implemented with straight elements only

fixed switches

motion of the particle, selected track:

motion of the particle:

fixed switches

motion from the non selected track:

motion of the particle:

flip-flop switches

again, implemented with straight elements only

our implementation: flip-flop switches

of course, if the particle comes again, the flip-flop will switch to the other position our implementation: flip-flop switches

the controller and the sensors:

our implementation: flip-flop switches

the controller and the sensors:

our implementation: memory switches

this time, both types of switches:

a passive one and an active one

but both are connected the 'passive' switch is somehow active

the 'active' switch is somehow passive

our implementation: memory switches

indeed:

for the **passive memory switch**:

when the particle comes from the **non-selected** track,

this triggers a change in the active memory switch

our implementation: memory switches

for the **active memory switch**:

when the particle crosses it,

there is **no change** in the switch,

a change occurs only when an appropriate signal is sent by the passive memory switch

below we detail:

crossing a passive memory switch the signal to the active switch

passive memory switches

again, implemented with straight elements only

here, note a new element,

the passive controller

it detects whether the particle arrives through the non-selected track

motion of the particle:

passive memory switches

note the change at times 4 and 5:

change of selection and a signal sent to the active controller

the **signal** from a **passive** memory switch to the **active** one

take two non-secant planes, Π^p and Π^a the passive switch on Π_p , the active one on Π^a , the switches facing each other through Π_0 , the plane of reflection of Π^p onto Π^a

the **signal** from a **passive** memory switch to the **active** one

approximative illustration

the **signal** from a **passive** memory switch to the **active** one

the tiling forces a more complex path from the passive controller to the active one

see *arXiv* paper for more details:

http://arxiv.org/abs/1005.4826

conclusion

and so we proved:

theorem there is a weakly universal cellular automaton on the dodecagrid with two states involving a truly spacial structure

conclusion

this result establishes the boundary between decidabilty and weak universality for cellular automata in the 3D hyperbolic space

we remain with two questions:

what can be said for strong universality?

what can be said for the hyperbolic plane?

conclusion

best result the hyperbolic plane for weak universality:

- a CA in the heptagrid with four states (MM 2009)
- 2 states also possible but with a linear structure (MM 2009)
- for strong universality, best result in the hyperbolic plane:
- a CA with 9 states, but a linear structure (MM 2010)

Thank you for your attention!