Formal Language Constrained Reachability and Model Checking Propositional Dynamic Logics

Martin Lange

School of Electr. Eng. and Comp. Sc., University of Kassel, Germany

29/09/2011

5th Workshop on Reachability Problems joint work with Roland Axelsson

Reachability Problems

reachability problems have two parameters:

- structures: where to find connection finite graphs, pushdown graphs, Petri nets, ...
- objectives: what kind of connection classes of formal languages

	finite	infinite	
regular	easy	lots of work	
non-regular	here	quickly undecidable	

Motivation

Question

Given a finite, directed, Σ -edge-labeled graph $G = (V, \rightarrow)$ and $s, t \in V$.

Is it possible to decide effectively whether there is a path from s to t of the form

- $a^n b^n c^n$ for some $n \in \mathbb{N}$?
- ww for some $w \in \Sigma^*$?

Is it possible efficiently?

Outline

- definition of three decision problems from
 - reachability theory
 - formal language theory
 - model checking
- interreducibility
- consequences

Formal Language Constrained Reachability

finite, directed graphs with edge labels from finite set Σ : $G = (V, \rightarrow)$ with $\rightarrow \subseteq V \times \Sigma \times V$

edge relation extends to words $w \in \Sigma^*$ inductively:

$$s \xrightarrow{\epsilon} t \quad \text{iff} \quad s = t$$
$$s \xrightarrow{aw} t \quad \text{iff} \quad \exists u.s \xrightarrow{a} u \land u \xrightarrow{w} t$$

Definition 1 (Formal Language Constrained Reachability)

Given $G = (V, \rightarrow)$, $s \in V$, $T \subseteq V$, and $L \subseteq \Sigma^*$, decide whether or not there is $t \in T$ and $w \in L$ s.t. $s \xrightarrow{w} t$.

Example

is $\{t\}$ reachable from s via $\{a^nb^n\mid n\in\mathbb{N}\}$? yes, e.g. via $s\xrightarrow{a}u\xrightarrow{a}u\xrightarrow{a}t\xrightarrow{b}u\xrightarrow{b}s\xrightarrow{b}t$

Regular Intersection

Definition 2 (Regular Intersection)

Given a formal language $L \subseteq \Sigma^*$ and an NFA for a regular language $R \subseteq \Sigma^*$ decide whether or not $L \cap R \neq \emptyset$

Remark

Let $\mathcal{C} \subseteq 2^{\Sigma^*}$. If \mathcal{C} closed under intersections with regular languages and has decidable emptiness problem then regular intersection is decidable too.

Model Checking PDL

PDL = modal logic interpreted over directed, edge- (Σ) and node-labeled $(2^{\mathcal{P}})$ graphs with accessibility relations closed under compositions and including tests

Syntax and Semantics

syntax defines formulas and programs inductively:

- $\mathcal{P} \subseteq FORM$
- $\varphi, \psi \in \text{Form} \Longrightarrow \varphi \lor \psi, \neg \varphi \in \text{Form}$
- $\varphi \in \text{FORM} \text{ and } L \subseteq \text{PROG}^* \Longrightarrow \langle L \rangle \varphi \in \text{FORM}$
- $\Sigma \subseteq PROG$
- $\varphi \in \text{Form} \Longrightarrow \varphi? \in \text{Prog}$

semantics:

```
s \xrightarrow{\varphi?} t \quad \text{iff} \quad s = t \text{ and } s \models \varphi
G, s \models \langle L \rangle \varphi \quad \text{iff} \quad \exists t. \exists w \in L. s \xrightarrow{w} t \text{ and } t \models \varphi
\vdots
```

Example

Definition 3 (Model Checking PDL)

Given $G = (V, \rightarrow, \lambda)$, $s \in V$ and $\varphi \in FORM$, decide whether or not $s \models \varphi$ holds.

Parametrisation

goal: determine complexity and decidability of these three problems answers clearly depend on classes of languages being used formally consider problems parametrised by class $\mathcal C$ of formal languages

- Reach[\mathcal{C}]: reachability problem for finite digraphs and objectives \mathcal{C}
- $\operatorname{REGISECT}[\mathcal{C}]$: regular intersection problem for \mathcal{C}
- ullet MC-PDL[$\mathcal C$]: model checking for PDL over languages from $\mathcal C$

Reductions

Theorem 4

- a) REACH[\mathcal{C}] \equiv_{lin} REGISECT[\mathcal{C}]
- b) Reach[\mathcal{C}] \leq_{lin} MC-PDL[\mathcal{C}]
- c) MC-PDL[\mathcal{C}] $\leq_{\mathcal{O}(n^2)}^{\text{Turing}}$ Reach[\mathcal{C}]

proof quite simple

benefit: transfers results from formal language theory to reachability and model checking

Reductions

(a) Reach[C] \leq ReglSect[C]

given
$$G = (V, \rightarrow)$$
, s , T and $L \in \mathcal{C}$, take NFA $\mathcal{A} = (V, s, \rightarrow, T)$
 $s \xrightarrow{w} t$ for some $w \in L \iff L \cap L(\mathcal{A}) \neq \emptyset$

$\mathsf{ReglSect}[\mathcal{C}] \leq \mathsf{Reach}[\mathcal{C}]$

analogously

(b) Reach[C] \leq MC-PDL[C]

given
$$G=(V,\to)$$
, s , T and $L\in\mathcal{C}$, take $G'=(V,\to,\lambda)$ with $q_T\in\lambda(t)$ iff $t\in T$

$$s \xrightarrow{w} t$$
 for some $w \in L \iff G', s \models \langle L \rangle q_T$

Reductions

(c) MC-PDL[C] \leq ^{Turing} Reach[C]

model checking algorithm for $\mathsf{PDL}[\mathcal{C}]$ with oracle for $\mathsf{REACH}[\mathcal{C}]$

$$\begin{array}{ll} \operatorname{MC}(\varphi, G = (V, \to, \lambda)) = \\ \operatorname{case} \ \varphi \ \operatorname{of} \\ q & : \ \operatorname{return} \ \{v \mid q \in \lambda(v)\} \\ \psi_1 \lor \psi_2 : \ \operatorname{return} \ \operatorname{MC}(\psi_1, G) \cup \operatorname{MC}(\psi_2, G) \\ \neg \psi & : \ \operatorname{return} \ V \setminus \operatorname{MC}(\psi, G) \\ \langle L \rangle \psi & : \ \operatorname{let} \ \Phi \ \operatorname{be} \ \operatorname{top-level} \ \operatorname{test} \ \operatorname{formulas} \ \operatorname{used} \ \operatorname{in} \ L \\ \to' := \left\{(v, \vartheta?, v) \mid \vartheta \in \Phi, v \in \operatorname{MC}(\vartheta, G)\right\} \\ G' := (V, \to \cup \to', \lambda) \\ T := \operatorname{MC}(\psi, G') \\ \operatorname{return} \ \left\{v \in V \mid (v, T) \in \operatorname{Reach}(L)\right\} \end{array}$$

Classes of Formal Languages

The Picture Now

language class ${\cal C}$	RegiSect[C]	Reach[C]	$\mathrm{MC} ext{-}\mathrm{PDL}[\mathcal{C}]$
ACFL,CL,BL, CSL	undec. [Landweber'63]	undec. [Barrett et al.'00]	undec.
MVPL	2EXPTIME [LaTorre et al.'07, Atig et al.'08]	2EXPTIME	
IL	EXPTIME [Aho'68, Tanaka/Kasai'07]	EXPTIME	
LIL,HL,CCL,TAL	PTIME [Gazdar'88],↓	PTIME	
DCFL, CFL	PTIME [Bar-Hillel et al.'61],↓	PTIME [Barrett et al.'00], ↓	PTIME [Lange'05],↓
SML, SSML, VPL	PTIME ↑,[Lange'11]		
REG	NLOGSPACE [Hunt'73]		PTIME [Fischer/Ladner'79, folk.]

Re-Consider Introductory Questions

Question

Given a finite, directed, Σ -edge-labeled graph $G = (V, \rightarrow)$ and $s, t \in V$.

Is it possible to decide effectively whether there is a path from s to t of the form

• $a^n b^n c^n$ for some $n \in \mathbb{N}$?

yes∈ PTIME

• ww for some $w \in \Sigma^*$?

yes∈ EXPTIME

Is it possible efficiently?

```
\{ww \mid w \in \Sigma^*\} is an indexed language (IL) \{a^nb^nc^n \mid n \in \mathbb{N}\} is a linear indexed language (LIL)
```