Observing Stochastic Processes by Timed Automata

Joost-Pieter Katoen

RWTH Aachen University Software Modeling and Verification Group

http://moves.rwth-aachen.de Workshop on Reachability Problems, Genova, 2011

joint work with Benoît Barbot, Taolue Chen, Tingting Han and Alexandru Mereacre

September 25, 2011

Let's start easy

Discrete-time Markov chain

A DTMC D is a tuple (S, P, ι_{init}) with:

S is a countable nonempty set of states

Let's start easy

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple (S, P, ι_{init}) with:

- S is a countable nonempty set of states
- ▶ $\mathbf{P}: S \times S \rightarrow [0, 1]$, transition probability function s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$

Let's start easy

Discrete-time Markov chain

A DTMC D is a tuple (S, **P**, ι_{init}) with:

- S is a countable nonempty set of states
- ▶ $\mathbf{P}: S \times S \rightarrow [0, 1]$, transition probability function s.t. $\sum_{s'} \mathbf{P}(s, s') = 1$

▶ $\iota_{\text{init}}: S \rightarrow [0, 1]$, the initial distribution with $\sum_{s \in S} \iota_{\text{init}}(s) = 1$

Initial states

• $\iota_{\text{init}}(s)$ is the probability that DTMC \mathcal{D} starts in state s

▶ the set { $s \in S \mid \iota_{init}(s) > 0$ } are the possible initial states.

Simulating a die by a fair coin [Knuth & Yao]

Heads = "go left"; tails = "go right".

Simulating a die by a fair coin [Knuth & Yao]

Heads = "go left"; tails = "go right". Does this DTMC adequately model a fair six-sided die?

Joost-Pieter Katoen

(Simple) reachability

Eventually reach a state in $G \subseteq S$.

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$\Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \, \pi[i] \in \mathbf{G} \}$$

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$\Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \, \pi[i] \in \mathbf{G} \}$$

Invariance, i.e., always stay in state in G:

$$\Box G = \{ \pi \in Paths(\mathcal{D}) \mid \forall i \in \mathbb{N}, \pi[i] \in G \} = \overline{\langle \overline{G} G \rangle}$$

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$\Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \, \pi[i] \in \mathbf{G} \}$$

Invariance, i.e., always stay in state in G:

$$\Box G = \{ \pi \in Paths(\mathcal{D}) \mid \forall i \in \mathbb{N}. \pi[i] \in G \} = \overline{\langle \overline{G} \overline{G} \rangle}.$$

Constrained reachability

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$\Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \, \pi[i] \in \mathbf{G} \}$$

Invariance, i.e., always stay in state in G:

$$\Box G = \{ \pi \in Paths(\mathcal{D}) \mid \forall i \in \mathbb{N} . \pi[i] \in G \} = \overline{\langle \overline{G} \overline{G} \rangle}$$

Constrained reachability

Or "reach-avoid" properties where states in $F \subseteq S$ are forbidden:

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$\Diamond \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N}. \, \pi[i] \in \mathbf{G} \}$$

Invariance, i.e., always stay in state in G:

$$\Box G = \{ \pi \in Paths(\mathcal{D}) \mid \forall i \in \mathbb{N} . \pi[i] \in G \} = \overline{\langle \overline{G} \overline{G} \rangle}$$

Constrained reachability

Or "reach-avoid" properties where states in $F \subseteq S$ are forbidden:

$$\overline{\mathsf{F}} \, \mathsf{U} \, \mathsf{G} \; = \; \{ \, \pi \in \mathit{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N} . \, \pi[i] \in \mathsf{G} \, \land \, \forall j < i . \, \pi[j] \notin \mathsf{F} \, \}$$

In a similar way, $\Box \Diamond G$ and $\Diamond \Box G$ are defined.

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

Problem statement

Let \mathcal{D} be a DTMC with finite state space $S, s \in S$ and $G \subseteq S$.

Aim: determine
$$Pr(s \models \Diamond G) = Pr_s \{ \pi \in Paths(s) \mid \pi \in \Diamond G \}.$$

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

Aim: determine
$$Pr(s \models \Diamond G) = Pr_s \{ \pi \in Paths(s) \mid \pi \in \Diamond G \}.$$

• Let variable
$$x_s = Pr(s \models \Diamond G)$$
 for any state s

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

Aim: determine
$$Pr(s \models \Diamond G) = Pr_s \{ \pi \in Paths(s) \mid \pi \in \Diamond G \}.$$

- Let variable $x_s = Pr(s \models \Diamond G)$ for any state s
 - if G is not reachable from s, then $x_s = 0$

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

Aim: determine
$$Pr(s \models \Diamond G) = Pr_s \{ \pi \in Paths(s) \mid \pi \in \Diamond G \}.$$

- Let variable $x_s = Pr(s \models \Diamond G)$ for any state s
 - if G is not reachable from s, then $x_s = 0$
 - if $s \in G$ then $x_s = 1$

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

Aim: determine
$$Pr(s \models \Diamond G) = Pr_s \{ \pi \in Paths(s) \mid \pi \in \Diamond G \}.$$

- Let variable $x_s = Pr(s \models \Diamond G)$ for any state s
 - if G is not reachable from s, then $x_s = 0$
 - if $s \in G$ then $x_s = 1$

• For any state
$$s \in Pre^*(G) \setminus G$$
:

Problem statement

Let \mathcal{D} be a DTMC with finite state space S, $s \in S$ and $G \subseteq S$.

Aim: determine
$$Pr(s \models \Diamond G) = Pr_s \{ \pi \in Paths(s) \mid \pi \in \Diamond G \}.$$

Characterisation of reachability probabilities

- Let variable $x_s = Pr(s \models \Diamond G)$ for any state s
 - if G is not reachable from s, then $x_s = 0$
 - if $s \in \mathbf{G}$ then $x_s = 1$

• For any state $s \in Pre^*(G) \setminus G$:

$$x_{s} = \underbrace{\sum_{t \in S \setminus G} \mathbf{P}(s, t) \cdot x_{t}}_{\text{reach } G \text{ via } t \in S \setminus G} + \underbrace{\sum_{u \in G} \mathbf{P}(s, u)}_{\text{reach } G \text{ in one step}}$$

Consider the event
\$\langle 4\$

- Consider the event
 \$\lambda4\$
- Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0$$
 and $x_4 = 1$

- Consider the event
 \$\$4\$
- Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0$$
 and $x_4 = 1$

$$x_{s_1} = x_{s_3} = x_{s_4} = 0$$

- Consider the event
 \$\lambda4\$
- Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0$$
 and $x_4 = 1$

$$x_{s_1} = x_{s_3} = x_{s_4} = 0$$
$$x_{s_0} = \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2}$$

- Consider the event
 \$\lambda4\$
- Using the previous characterisation we obtain:

$$x_1 = x_2 = x_3 = x_5 = x_6 = 0$$
 and $x_4 = 1$

$$\begin{aligned} x_{s_1} &= x_{s_3} = x_{s_4} = 0 \\ x_{s_0} &= \frac{1}{2} x_{s_1} + \frac{1}{2} x_{s_2} \\ x_{s_2} &= \frac{1}{2} x_{s_5} + \frac{1}{2} x_{s_6} \end{aligned}$$

- Consider the event
 \$\lambda4\$
- Using the previous characterisation we obtain:

$$\begin{aligned} x_1 &= x_2 = x_3 = x_5 = x_6 = 0 \text{ and } x_4 = 1 \\ x_{s_1} &= x_{s_3} = x_{s_4} = 0 \\ x_{s_0} &= \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2} \\ x_{s_2} &= \frac{1}{2}x_{s_5} + \frac{1}{2}x_{s_6} \\ x_{s_5} &= \frac{1}{2}x_5 + \frac{1}{2}x_4 \end{aligned}$$

- Consider the event
 \$\lambda4\$
- Using the previous characterisation we obtain:

$$\begin{aligned} x_1 &= x_2 = x_3 = x_5 = x_6 = 0 \text{ and } x_4 = 1 \\ x_{s_1} &= x_{s_3} = x_{s_4} = 0 \\ x_{s_0} &= \frac{1}{2}x_{s_1} + \frac{1}{2}x_{s_2} \\ x_{s_2} &= \frac{1}{2}x_{s_5} + \frac{1}{2}x_{s_6} \\ x_{s_5} &= \frac{1}{2}x_5 + \frac{1}{2}x_4 \\ x_{s_6} &= \frac{1}{2}x_{s_2} + \frac{1}{2}x_6 \end{aligned}$$

- Consider the event \u03b34
- Using the previous characterisation we obtain:

$$\begin{split} x_1 &= x_2 = x_3 = x_5 = x_6 = 0 \text{ and } x_4 = 1 \\ x_{s_1} &= x_{s_3} = x_{s_4} = 0 \\ x_{s_0} &= \frac{1}{2} x_{s_1} + \frac{1}{2} x_{s_2} \\ x_{s_2} &= \frac{1}{2} x_{s_5} + \frac{1}{2} x_{s_6} \\ x_{s_5} &= \frac{1}{2} x_5 + \frac{1}{2} x_4 \\ x_{s_6} &= \frac{1}{2} x_{s_2} + \frac{1}{2} x_6 \end{split}$$

Gaussian elimination yields:

$$x_{s_5} = \frac{1}{2}, x_{s_2} = \frac{1}{3}, x_{s_6} = \frac{1}{6}, \text{ and } x_{s_0} = \frac{1}{6}$$

Reachability probabilities as linear equation system

Reachability probabilities as linear equation system

• Let $S_{?} = Pre^{*}(G) \setminus G$, the states that can reach G by > 0 steps

Reachability probabilities as linear equation system

- Let $S_{?} = Pre^{*}(G) \setminus G$, the states that can reach G by > 0 steps
- ► **A** = $(\mathbf{P}(s, t))_{s,t \in S_2}$, the transition probabilities in S_2

Reachability probabilities as linear equation system

- Let $S_{?} = Pre^{*}(G) \setminus G$, the states that can reach G by > 0 steps
- ► **A** = $(\mathbf{P}(s, t))_{s,t \in S_2}$, the transition probabilities in S_2
- **b** = $(b_s)_{s \in S_7}$, the probes to reach **G** in 1 step, i.e., $b_s = \sum_{u \in G} \mathbf{P}(s, u)$

Reachability probabilities as linear equation system

▶ Let $S_? = Pre^*(G) \setminus G$, the states that can reach G by > 0 steps

► $\mathbf{A} = (\mathbf{P}(s, t))_{s,t \in S_7}$, the transition probabilities in S_7

b = $(b_s)_{s \in S_7}$, the probes to reach **G** in 1 step, i.e., $b_s = \sum_{u \in G} \mathbf{P}(s, u)$

Then: $\mathbf{x} = (x_s)_{s \in S_7}$ with $x_s = Pr(s \models \Diamond G)$ is the unique solution of:

Reachability probabilities as linear equation system

Let S_? = Pre*(G) \ G, the states that can reach G by > 0 steps
A = (P(s, t))_{s,t∈S?}, the transition probabilities in S?
b = (b_s)_{s∈S?}, the probs to reach G in 1 step, i.e., b_s = ∑_{u∈G} P(s, u)

Then: $\mathbf{x} = (x_s)_{s \in S_7}$ with $x_s = Pr(s \models \Diamond G)$ is the unique solution of:

$$\mathbf{x} = \mathbf{A} \cdot \mathbf{x} + \mathbf{b}$$
 or $(\mathbf{I} - \mathbf{A}) \cdot \mathbf{x} = \mathbf{b}$

where **I** is the identity matrix of cardinality $|S_{?}| \times |S_{?}|$.

Repeated reachability and persistence

Long-run theorem

Repeated reachability and persistence

Long-run theorem

Almost surely any finite DTMC eventually reaches a BSCC and visits all its states infinitely often.

Repeated reachability and persistence

Long-run theorem

Almost surely any finite DTMC eventually reaches a BSCC and visits all its states infinitely often.

Repeated reachability = Reachability

For finite DTMC with state space *S*, $G \subseteq S$, and $s \in S$:

 $Pr(s \models \Box \Diamond G) = Pr(s \models \Diamond U)$

where U is the union of all BSCCs T with $T \cap G \neq \emptyset$.
Repeated reachability and persistence

Long-run theorem

Almost surely any finite DTMC eventually reaches a BSCC and visits all its states infinitely often.

Repeated reachability = Reachability

For finite DTMC with state space S, $G \subseteq S$, and $s \in S$:

 $Pr(s \models \Box \Diamond G) = Pr(s \models \Diamond U)$

where U is the union of all BSCCs T with $T \cap G \neq \emptyset$.

Persistency = Reachability

For finite DTMC with state space S, $G \subseteq S$, and $s \in S$:

$$Pr(s \models \Diamond \Box G) = Pr(s \models \Diamond U)$$

where U is the union of all BSCCs T with $T \subseteq G$.

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set { $(L_1, K_1), \ldots, (L_n, K_n)$ }.

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set { $(L_1, K_1), \ldots, (L_n, K_n)$ }. Then:

$${\it Pr}^{\cal D}(s\models {\cal A}) \;=\; {\it Pr}^{{\cal D}\otimes {\cal A}}(\langle s,q_s
angle \models \Diamond U\,) \quad {
m where} \; q_s = \delta(q_0,L(s)).$$

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set { $(L_1, K_1), \ldots, (L_n, K_n)$ }. Then:

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Diamond U) \text{ where } q_s = \delta(q_0, L(s)).$$

where U is the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set { $(L_1, K_1), \ldots, (L_n, K_n)$ }. Then:

$$Pr^{\mathcal{D}}(s\models\mathcal{A}) = Pr^{\mathcal{D}\otimes\mathcal{A}}(\langle s,q_s
angle\models\Diamond U) \quad ext{where } q_s = \delta(q_0,L(s)).$$

where U is the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. BSCC $T \subseteq S \times Q$ is accepting if $T \cap (S \times L_i) = \emptyset$ and $T \cap (S \times K_i) \neq \emptyset$ for some i.

Synchronous product construction

DTMC \mathcal{D} with state space S

 $\begin{array}{c} \mathsf{DRA}\ \mathcal{A}\\ \mathsf{with}\ \mathsf{state}\ \mathsf{space}\ \mathcal{Q} \end{array}$

Synchronous product construction \otimes

DTMC \mathcal{D} with state space *S* DRA \mathcal{A} with state space Q

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set { $(L_1, K_1), \ldots, (L_n, K_n)$ }. Then:

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Diamond U) \text{ where } q_s = \delta(q_0, L(s)).$$

where U is the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set { $(L_1, K_1), \ldots, (L_n, K_n)$ }. Then:

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Diamond U) \text{ where } q_s = \delta(q_0, L(s)).$$

where U is the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

Thus the computation of probabilities for satisfying ω -regular properties boils down to computing the reachability probabilities for certain BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, *s* a state in \mathcal{D} , \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set { $(L_1, K_1), \ldots, (L_n, K_n)$ }. Then:

$$Pr^{\mathcal{D}}(s \models \mathcal{A}) = Pr^{\mathcal{D} \otimes \mathcal{A}}(\langle s, q_s \rangle \models \Diamond U) \text{ where } q_s = \delta(q_0, L(s)).$$

where U is the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

Thus the computation of probabilities for satisfying ω -regular properties boils down to computing the reachability probabilities for certain BSCCs in $\mathcal{D} \otimes \mathcal{A}$. A graph analysis and solving systems of linear equations suffice.

Random timing

Density of exponential distribution

The density of an *exponentially distributed* r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$f_Y(x) = \lambda \cdot e^{-\lambda \cdot x}$$
 for $x > 0$ and $f_Y(x) = 0$ otherwise

Density of exponential distribution

The density of an *exponentially distributed* r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$f_Y(x) = \lambda \cdot e^{-\lambda \cdot x}$$
 for $x > 0$ and $f_Y(x) = 0$ otherwise

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$F_Y(d) = \int_0^d \lambda \cdot e^{-\lambda \cdot x} dx = [-e^{-\lambda \cdot x}]_0^d = 1 - e^{-\lambda \cdot d}$$

Density of exponential distribution

The density of an *exponentially distributed* r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$f_Y(x) = \lambda \cdot e^{-\lambda \cdot x}$$
 for $x > 0$ and $f_Y(x) = 0$ otherwise

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$F_Y(d) = \int_0^d \lambda \cdot e^{-\lambda \cdot x} dx = [-e^{-\lambda \cdot x}]_0^d = 1 - e^{-\lambda \cdot d}.$$

The rate $\lambda \in \mathbb{R}_{>0}$ uniquely determines an exponential distribution.

Density of exponential distribution

The density of an *exponentially distributed* r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$f_Y(x) = \lambda \cdot e^{-\lambda \cdot x}$$
 for $x > 0$ and $f_Y(x) = 0$ otherwise

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$F_Y(d) = \int_0^d \lambda \cdot e^{-\lambda \cdot x} dx = [-e^{-\lambda \cdot x}]_0^d = 1 - e^{-\lambda \cdot d}.$$

The rate $\lambda \in \mathbb{R}_{>0}$ uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate $\lambda \in \mathbb{R}_{>0}$. Then:

Density of exponential distribution

The density of an *exponentially distributed* r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$f_Y(x) = \lambda \cdot e^{-\lambda \cdot x}$$
 for $x > 0$ and $f_Y(x) = 0$ otherwise

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$F_Y(d) = \int_0^d \lambda \cdot e^{-\lambda \cdot x} dx = [-e^{-\lambda \cdot x}]_0^d = 1 - e^{-\lambda \cdot d}.$$

The rate $\lambda \in \mathbb{R}_{>0}$ uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate $\lambda \in \mathbb{R}_{>0}$. Then: Expectation $E[Y] = \frac{1}{\lambda}$ and variance $Var[Y] = \frac{1}{\lambda^2}$

Exponential pdf and cdf

The higher λ , the faster the cdf approaches 1.

Continuous-time Markov chains

A CTMC is a DTMC with an *exit rate* function $r : S \to \mathbb{R}_{>0}$ where r(s) is the rate of an exponential distribution.

Example: a classical perspective

A CTMC is a DTMC with an *exit rate* function $r : S \to \mathbb{R}_{>0}$ where r(s) is the rate of an exponential distribution.

Example: a classical perspective

A CTMC is a DTMC with an *exit rate* function $r : S \to \mathbb{R}_{>0}$ where r(s) is the rate of an exponential distribution.

A CTMC is a DTMC where transition probability function P is replaced by a *transition rate* function R.

Example: a classical perspective

A CTMC is a DTMC with an *exit rate* function $r : S \to \mathbb{R}_{>0}$ where r(s) is the rate of an exponential distribution.

A CTMC is a DTMC where transition probability function **P** is replaced by a *transition rate* function **R**. We have $\mathbf{R}(s, s') = \mathbf{P}(s, s') \cdot r(s)$.

CTMC semantics

CTMC semantics

State-to-state timed transition probability

The probability to *move* from non-absorbing s to s' in [0, t] is:

$$\frac{\mathsf{R}(s,s')}{r(s)} \cdot \left(1 - e^{-r(s) \cdot t}\right).$$

CTMC semantics

State-to-state timed transition probability

The probability to *move* from non-absorbing s to s' in [0, t] is:

$$\frac{\mathsf{R}(s,s')}{r(s)} \cdot \left(1 - e^{-r(s) \cdot t}\right).$$

Residence time distribution

The probability to *take some* outgoing transition from s in [0, t] is:

$$\int_0^t r(s) \cdot e^{-r(s) \cdot x} dx = 1 - e^{-r(s) \cdot t}$$

CTMCs are omnipresent!

 Markovian queueing networks 	(Kleinrock 1975)
 Stochastic Petri nets 	(Molloy 1977)
 Stochastic activity networks 	(Meyer & Sanders 1985)
 Stochastic process algebra 	(Herzog <i>et al.</i> , Hillston <mark>1993)</mark>
 Probabilistic input/output automata 	(Smolka <i>et al.</i> 1994)
 Calculi for biological systems 	(Priami <i>et al.</i> , Cardelli <mark>2002</mark>)

CTMCs are omnipresent!

Markovian queueing networks (Kleinrock 1975) Stochastic Petri nets (Molloy 1977) Stochastic activity networks (Meyer & Sanders 1985) Stochastic process algebra (Herzog et al., Hillston 1993) Probabilistic input/output automata (Smolka et al. 1994) Calculi for biological systems (Priami et al., Cardelli 2002) CTMCs are one of the most prominent models in performance analysis

Joost-Pieter Katoen

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states and time instants:

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states and time instants:

$$\pi = s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \cdots$$

such that $s_i \in S$ and $t_i \in \mathbb{R}_{>0}$.

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states and time instants:

$$\pi = s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \cdots$$

such that $s_i \in S$ and $t_i \in \mathbb{R}_{>0}$.

Time instant t_i is the amount of time spent in state s_i .

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states and time instants:

$$\pi = s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \cdots$$

such that $s_i \in S$ and $t_i \in \mathbb{R}_{>0}$.

Time instant t_i is the amount of time spent in state s_i .

Notations

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states and time instants:

$$\pi = s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \cdots$$

such that $s_i \in S$ and $t_i \in \mathbb{R}_{>0}$.

Time instant t_i is the amount of time spent in state s_i .

Notations

• Let $\pi[i] := s_i$ denote the (i+1)-st state along the timed path π .

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states and time instants:

$$\pi = s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \cdots$$

such that $s_i \in S$ and $t_i \in \mathbb{R}_{>0}$.

Time instant t_i is the amount of time spent in state s_i .

Notations

- Let $\pi[i] := s_i$ denote the (i+1)-st state along the timed path π .
- Let $\pi \mathbb{Q}t$ be the state occupied in π at time $t \in \mathbb{R}_{\geq 0}$,

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states and time instants:

$$\pi = s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \cdots$$

such that $s_i \in S$ and $t_i \in \mathbb{R}_{>0}$.

Time instant t_i is the amount of time spent in state s_i .

Notations

• Let $\pi[i] := s_i$ denote the (i+1)-st state along the timed path π .

▶ Let π @t be the state occupied in π at time $t \in \mathbb{R}_{\geq 0}$, i.e. π @t := π [i] where *i* is the smallest index such that $\sum_{i=0}^{i} t_i > t$.

Zeno theorem

¹Zeno of Elea (490–430 BC), philosopher, famed for his paradoxes.

Joost-Pieter Katoen

Observing Stochastic Processes by Timed Automata 21/50
Zeno theorem

Zeno path

Path $s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \xrightarrow{t_2} s_3 \dots$ is called Zeno ¹ if $\sum_i t_i$ converges.

¹Zeno of Elea (490–430 BC), philosopher, famed for his paradoxes.

Joost-Pieter Katoen

Observing Stochastic Processes by Timed Automata 21/50

Zeno theorem

Zeno path

Path
$$s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \xrightarrow{t_2} s_3 \dots$$
 is called Zeno ¹ if $\sum_i t_i$ converges.

Example

$$s_0 \xrightarrow{1} s_1 \xrightarrow{\frac{1}{2}} s_2 \xrightarrow{\frac{1}{4}} s_3 \dots s_j \xrightarrow{\frac{1}{2'}} s_{j+1} \dots$$

¹Zeno of Elea (490–430 BC), philosopher, famed for his paradoxes.

Joost-Pieter Katoen

Observing Stochastic Processes by Timed Automata 21/50

Zeno theorem

Zeno path

Path
$$s_0 \xrightarrow{t_0} s_1 \xrightarrow{t_1} s_2 \xrightarrow{t_2} s_3 \dots$$
 is called Zeno ¹ if $\sum_i t_i$ converges.

Example

$$s_0 \xrightarrow{1} s_1 \xrightarrow{\frac{1}{2}} s_2 \xrightarrow{\frac{1}{4}} s_3 \dots s_j \xrightarrow{\frac{1}{2'}} s_{j+1} \dots$$

In timed automata, such executions are typically excluded from the analysis.

Zeno theorem

For all states s in any CTMC, $Pr\{\pi \in Paths(s) \mid \pi \text{ is Zeno}\} = 0$.

¹Zeno of Elea (490–430 BC), philosopher, famed for his paradoxes.

Joost-Pieter Katoen

Observing Stochastic Processes by Timed Automata 21/50

Let CTMC C with (possibly infinite) state space S.

Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I.

Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval *I*. Formally:

$$\Diamond^{I} G = \{ \pi \in Paths(\mathcal{C}) \mid \exists t \in I. \pi @t \in G \}$$

Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I. Formally:

$$\Diamond^{I} G = \{ \pi \in Paths(\mathcal{C}) \mid \exists t \in I. \pi @t \in G \}$$

Invariance, i.e., always stay in state in G in the interval I:

Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I. Formally:

$$\Diamond^{I} \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{C}) \mid \exists t \in I. \, \pi @ t \in \mathbf{G} \}$$

Invariance, i.e., always stay in state in G in the interval I:

$$\Box^{\prime} G = \{ \pi \in \textit{Paths}(\mathcal{C}) \mid \forall t \in \textit{I}. \pi @t \in \textit{G} \} = \overline{\Diamond^{\prime} \overline{G}}.$$

Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I. Formally:

$$\Diamond^{I} \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{C}) \mid \exists t \in I. \, \pi @ t \in \mathbf{G} \}$$

Invariance, i.e., always stay in state in G in the interval I:

$$\Box^{\prime} G = \{ \pi \in Paths(\mathcal{C}) \mid \forall t \in I. \pi @t \in G \} = \overline{\Diamond^{\prime} \overline{G}}.$$

Constrained timed reachability

Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I. Formally:

$$\Diamond^{I} G = \{ \pi \in Paths(\mathcal{C}) \mid \exists t \in I. \pi @t \in G \}$$

Invariance, i.e., always stay in state in G in the interval I:

$$\Box^{\prime} G = \{ \pi \in Paths(\mathcal{C}) \mid \forall t \in I. \pi @t \in G \} = \overline{\Diamond^{\prime} \overline{G}}.$$

Constrained timed reachability

Or "reach-avoid" properties where states in $F \subseteq S$ are forbidden:

Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I. Formally:

$$\Diamond^{I} \mathbf{G} = \{ \pi \in \mathsf{Paths}(\mathcal{C}) \mid \exists t \in I. \, \pi @ t \in \mathbf{G} \}$$

Invariance, i.e., always stay in state in G in the interval I:

$$\Box^{\prime} G = \{ \pi \in Paths(\mathcal{C}) \mid \forall t \in I. \pi @t \in G \} = \overline{\Diamond^{\prime} \overline{G}}.$$

Constrained timed reachability

Or "reach-avoid" properties where states in $F \subseteq S$ are forbidden:

$$\overline{F} \cup G = \{ \pi \in Paths(\mathcal{C}) \mid \exists t \in I. \pi @t \in G \land \forall d < t. \pi @d \notin F \}$$

Measurability

Measurability

Measurability theorem

Events $\Diamond' G$, $\Box' G$, and $\overline{F} \cup' G$ are measurable on any CTMC.

Problem statement

Let C be a CTMC with finite state space S, $s \in S$, $t \in \mathbb{R}_{\geq 0}$ and $G \subseteq S$.

Problem statement

Let C be a CTMC with finite state space S, $s \in S$, $t \in \mathbb{R}_{\geq 0}$ and $G \subseteq S$.

Aim:
$$Pr(s \models \Diamond^{\leqslant t} G) = Pr_s \{ \pi \in Paths(s) \mid \pi \models \Diamond^{\leqslant t} G \}$$

where Pr_s is the probability measure in CTMC C with single initial state s.

Problem statement

Let C be a CTMC with finite state space S, $s \in S$, $t \in \mathbb{R}_{\geq 0}$ and $G \subseteq S$.

Aim:
$$Pr(s \models \Diamond^{\leq t} G) = Pr_s \{ \pi \in Paths(s) \mid \pi \models \Diamond^{\leq t} G \}$$

where Pr_s is the probability measure in CTMC C with single initial state s.

• Let function
$$x_s(t) = Pr(s \models \Diamond^{\leq t} G)$$
 for any state s

Problem statement

Let C be a CTMC with finite state space S, $s \in S$, $t \in \mathbb{R}_{\geq 0}$ and $G \subseteq S$.

Aim:
$$Pr(s \models \Diamond^{\leq t} G) = Pr_s \{ \pi \in Paths(s) \mid \pi \models \Diamond^{\leq t} G \}$$

where Pr_s is the probability measure in CTMC C with single initial state s.

- Let function $x_s(t) = Pr(s \models \Diamond^{\leq t} G)$ for any state s
 - if G is not reachable from s, then $x_s(t) = 0$ for all t

Problem statement

Let C be a CTMC with finite state space S, $s \in S$, $t \in \mathbb{R}_{\geq 0}$ and $G \subseteq S$.

Aim:
$$Pr(s \models \Diamond^{\leq t} G) = Pr_s \{ \pi \in Paths(s) \mid \pi \models \Diamond^{\leq t} G \}$$

where Pr_s is the probability measure in CTMC C with single initial state s.

- Let function $x_s(t) = Pr(s \models \Diamond^{\leq t} G)$ for any state s
 - if G is not reachable from s, then $x_s(t) = 0$ for all t
 - if $s \in G$ then $x_s(t) = 1$ for all t

Problem statement

Let C be a CTMC with finite state space S, $s \in S$, $t \in \mathbb{R}_{\geq 0}$ and $G \subseteq S$.

Aim:
$$Pr(s \models \Diamond^{\leq t} G) = Pr_s \{ \pi \in Paths(s) \mid \pi \models \Diamond^{\leq t} G \}$$

where Pr_s is the probability measure in CTMC C with single initial state s.

- Let function $x_s(t) = Pr(s \models \Diamond^{\leq t} G)$ for any state s
 - if G is not reachable from s, then $x_s(t) = 0$ for all t
 - if $s \in G$ then $x_s(t) = 1$ for all t
- For any state $s \in Pre^*(G) \setminus G$:

Problem statement

Let C be a CTMC with finite state space S, $s \in S$, $t \in \mathbb{R}_{\geq 0}$ and $G \subseteq S$.

Aim:
$$Pr(s \models \Diamond^{\leq t} G) = Pr_s \{ \pi \in Paths(s) \mid \pi \models \Diamond^{\leq t} G \}$$

where Pr_s is the probability measure in CTMC C with single initial state s.

Characterisation of timed reachability probabilities

- Let function $x_s(t) = Pr(s \models \Diamond^{\leq t} G)$ for any state s
 - if G is not reachable from s, then $x_s(t) = 0$ for all t

• if
$$s \in G$$
 then $x_s(t) = 1$ for all t

• For any state $s \in Pre^*(G) \setminus G$:

$$x_{s}(t) = \int_{0}^{t} \sum_{s' \in S} \underbrace{\mathbb{R}(s, s') \cdot e^{-r(s) \cdot x}}_{\text{probability to move to}} \cdot \underbrace{x_{s'}(t-x)}_{\text{prob. to fulfill}} dx$$

$$state s' \text{ at time } x \qquad \diamondsuit^{\leqslant t-x} G \text{ from } s'$$

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations.

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations. This is in general non-trivial, inefficient, and has several pitfalls such as numerical stability.

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations. This is in general non-trivial, inefficient, and has several pitfalls such as numerical stability.

Solution

Reduce the problem of computing $Pr(s \models \Diamond^{\leq t} G)$ to an alternative problem for which well-known efficient techniques exist:

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations. This is in general non-trivial, inefficient, and has several pitfalls such as numerical stability.

Solution

Reduce the problem of computing $Pr(s \models \Diamond^{\leq t} G)$ to an alternative problem for which well-known efficient techniques exist: computing transient probabilities.

Aim

Aim

Compute $Pr(s \models \Diamond^{\leq t} G)$ in CTMC C.

Aim

Compute $Pr(s \models \Diamond^{\leq t} G)$ in CTMC C. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important.

Aim

Compute $Pr(s \models \Diamond^{\leq t} G)$ in CTMC C. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Aim

Compute $Pr(s \models \Diamond^{\leq t} G)$ in CTMC C. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let CTMC $C = (S, \mathbf{P}, r, \iota_{init})$ and $G \subseteq S$.

Aim

Compute $Pr(s \models \Diamond^{\leq t} G)$ in CTMC C. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let CTMC $C = (S, \mathbf{P}, r, \iota_{init})$ and $G \subseteq S$. The CTMC $C[G] = (S, \mathbf{P}_G, r, \iota_{init})$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

Aim

Compute $Pr(s \models \Diamond^{\leq t} G)$ in CTMC C. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let CTMC $C = (S, \mathbf{P}, r, \iota_{init})$ and $G \subseteq S$. The CTMC $C[G] = (S, \mathbf{P}_G, r, \iota_{init})$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

Aim

Compute $Pr(s \models \Diamond^{\leq t} G)$ in CTMC C. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let CTMC $C = (S, \mathbf{P}, r, \iota_{init})$ and $G \subseteq S$. The CTMC $C[G] = (S, \mathbf{P}_G, r, \iota_{init})$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

Lemma

$$Pr(s \models \Diamond^{\leqslant t} G)$$

timed reachability in $\ensuremath{\mathcal{C}}$

Aim

Compute $Pr(s \models \Diamond^{\leq t} G)$ in CTMC C. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let CTMC $C = (S, \mathbf{P}, r, \iota_{init})$ and $G \subseteq S$. The CTMC $C[G] = (S, \mathbf{P}_G, r, \iota_{init})$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

Lemma $\underbrace{Pr(s \models \Diamond^{\leq t} G)}_{\text{timed reachability in } \mathcal{C}} = \underbrace{Pr(s \models \Diamond^{=t} G)}_{\text{timed reachability in } \mathcal{C}[G]} =$
Timed reachability probabilities = transient probabilities

Aim

Compute $Pr(s \models \Diamond^{\leq t} G)$ in CTMC C. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let CTMC $C = (S, \mathbf{P}, r, \iota_{init})$ and $G \subseteq S$. The CTMC $C[G] = (S, \mathbf{P}_G, r, \iota_{init})$ with $\mathbf{P}_G(s, t) = \mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_G(s, s) = 1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

Lemma

$$\underbrace{\Pr(s \models \Diamond^{\leq t} G)}_{\text{timed reachability in } \mathcal{C}} = \underbrace{\Pr(s \models \Diamond^{=t} G)}_{\text{timed reachability in } \mathcal{C}[G]} = \underbrace{\underline{p}(t) \text{ with } \underline{p}(0) = \mathbf{1}_s}_{\text{transient prob. in } \mathcal{C}[G]}.$$

Transient distribution theorem

Theorem: transient distribution as ordinary differential equation

The transient probability vector $\underline{p}(t) = (p_{s_1}(t), \dots, p_{s_k}(t))$ satisfies:

$$\underline{p}'(t) = \underline{p}(t) \cdot (\mathbf{R} - \mathbf{r})$$
 given $\underline{p}(0)$

where \mathbf{r} is the diagonal matrix of vector \underline{r} .

Transient distribution theorem

Theorem: transient distribution as ordinary differential equation

The transient probability vector $\underline{p}(t) = (p_{s_1}(t), \dots, p_{s_k}(t))$ satisfies:

$$\underline{p}'(t) = \underline{p}(t) \cdot (\mathbf{R} - \mathbf{r})$$
 given $\underline{p}(0)$

where \mathbf{r} is the diagonal matrix of vector \underline{r} .

Solution technique:

Transform the CTMC (again), and then truncate a Taylor-MacLaurin expansion.

Transient distribution theorem

Theorem: transient distribution as ordinary differential equation

The transient probability vector $\underline{p}(t) = (p_{s_1}(t), \dots, p_{s_k}(t))$ satisfies:

$$\underline{p}'(t) = \underline{p}(t) \cdot (\mathbf{R} - \mathbf{r})$$
 given $\underline{p}(0)$

where \mathbf{r} is the diagonal matrix of vector \underline{r} .

Solution technique:

Transform the CTMC (again), and then truncate a Taylor-MacLaurin expansion. This yields a polynomial-time approximation algorithm.

Robot navigation

			$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
•	A		

Robot navigation

The robot randomly moves through the cells, and resides in a cell for an exponentially distributed amount of time.

Gray cells are dangerous; the robot should leave them quickly.

Robot navigation

The robot randomly moves through the cells, and resides in a cell for an exponentially distributed amount of time.

► Gray cells are dangerous; the robot should leave them quickly.

Property:

What is the probability to reach B from A within 10 time units while residing in any dangerous zone for at most 2 time units?

Joost-Pieter Katoen

Robot navigation: property

Property:

What is the probability to reach B from A within 10 time units while residing in any dangerous zone for at most 2 time units?

Deterministic timed automata

A Deterministic Timed Automaton (DTA) A is a tuple $(\Sigma, X, Q, q_0, F, \rightarrow)$:

- Σ alphabet
- ► X finite set of *clocks*
- ► Q finite set of *locations*
- ▶ $q_0 \in Q$ *initial* location
- $F \subseteq Q$ *accept* locations
- $\blacktriangleright \rightarrow \in Q \times \Sigma \times \mathcal{C}(X) \times 2^X \times Q$ transition relation:

Deterministic timed automata

A Deterministic Timed Automaton (DTA) A is a tuple $(\Sigma, X, Q, q_0, F, \rightarrow)$:

- Σ alphabet
- ► X finite set of *clocks*
- ► Q finite set of *locations*
- ▶ $q_0 \in Q$ *initial* location
- $F \subseteq Q$ *accept* locations
- $\blacktriangleright \rightarrow \in Q \times \Sigma \times \mathcal{C}(X) \times 2^X \times Q$ - transition relation;

Determinism: $q \xrightarrow{a,g,X} q'$ and $q \xrightarrow{a,g',X'} q''$ implies $g \cap g' = \emptyset$

What are we interested in?

Problem statement:

Given model CTMC C and specification DTA A, determine the fraction of runs in C that satisfy A:

$$Pr(\mathcal{C} \models \mathcal{A}) := Pr^{\mathcal{C}} \{ Paths in \ \mathcal{C} accepted by \ \mathcal{A} \}$$

Well-definedness

For any CTMC C and DTA A, the set {Paths in C accepted by A} is measurable.

Well-definedness

For any CTMC C and DTA A, the set {Paths in C accepted by A} is measurable.

Characterizing the probability of $\mathcal{C} \models$.

 $Pr(\mathcal{C} \models \mathcal{A})$ equals the probability of accepting paths in $\mathcal{C} \otimes \mathcal{A}$.

Well-definedness

For any CTMC C and DTA A, the set {Paths in C accepted by A} is measurable.

Characterizing the probability of $\mathcal{C}\models$.

 $Pr(\mathcal{C} \models \mathcal{A})$ equals the probability of accepting paths in $\mathcal{C} \otimes \mathcal{A}$.

Zone graph construction

- 1. Reachability probabilities in $\mathcal{C} \otimes \mathcal{A}$ and $ZG(\mathcal{C} \otimes \mathcal{A})$ coincide
- 2. $ZG(\mathcal{C} \otimes \mathcal{A})$ and $\mathcal{C} \otimes ZG(\mathcal{A})$ are isomorphic
- 3. $\mathcal{C} \otimes ZG(\mathcal{A})$ is a piecewise-deterministic Markov process [Davis, 1993]

Well-definedness

For any CTMC C and DTA A, the set {Paths in C accepted by A} is measurable.

Characterizing the probability of $\mathcal{C} \models \mathcal{A}$ under finite acceptance

 $Pr(\mathcal{C} \models \mathcal{A})$ equals the probability of accepting paths in $\mathcal{C} \otimes ZG(\mathcal{A})$.

Characterizing the probability of $C \models A$ under Muller acceptance

 $Pr(\mathcal{C} \models \mathcal{A})$ equals the probability of accepting BSCCs in $\mathcal{C} \otimes ZG(\mathcal{A})$.

Product construction: example

An example CTMC C (left) and DTA A (right)

Product construction: example

An example CTMC \mathcal{C} (left up) and DTA \mathcal{A} (right up) and $\mathcal{C} \otimes ZG(\mathcal{A})$ (below)

One-clock DTA: partitioning $C \otimes ZG(A)$

One-clock DTA: partitioning $C \otimes ZG(A)$

- constants $c_0 < \ldots < c_m$ in A yields m+1 subgraphs.
- subgraph *i* captures behaviour of C and A in $[c_i, c_{i+1})$.
- any subgraph is a CTMC, resets lead to subgraph 0, delays to i+1.
- ► a subgraph with its resets yields an "augmented" CTMC.

One-clock DTA: partitioning $C \otimes ZG(A)$

One-clock DTA: characterizing $Pr(\mathcal{C} \models \mathcal{A})$

Theorem

For CTMC ${\cal C}$ with initial distribution $\iota_{\rm init}$ and 1-clock DTA ${\cal A}$ we have:

$$Pr(\mathcal{C} \models \mathcal{A}) = \iota_{\text{init}} \cdot \mathbf{u}$$

where \boldsymbol{u} is the solution of the linear equation system $\boldsymbol{x}\cdot\boldsymbol{M}=\boldsymbol{f},$ with

$$\mathbf{M} = \begin{pmatrix} \mathbf{I}_{n_0} - \mathbf{B}_{m-1} & \mathbf{A}_{m-1} \\ \hat{\mathbf{P}}_m^a & \mathbf{I}_{n_m} - \mathbf{P}_m \end{pmatrix}$$

and \mathbf{f} is the characterizing vector of the final states in subgraph m, and \mathbf{A} and \mathbf{B} are obtained from transient probabilities in all subgraphs.

One-clock DTA: characterizing $Pr(\mathcal{C} \models \mathcal{A})$

Theorem

For CTMC ${\cal C}$ with initial distribution $\iota_{\rm init}$ and 1-clock DTA ${\cal A}$ we have:

$$Pr(\mathcal{C} \models \mathcal{A}) = \iota_{\text{init}} \cdot \mathbf{u}$$

where \boldsymbol{u} is the solution of the linear equation system $\boldsymbol{x}\cdot\boldsymbol{M}=\boldsymbol{f},$ with

$$\mathbf{M} = \begin{pmatrix} \mathbf{I}_{n_0} - \mathbf{B}_{m-1} & \mathbf{A}_{m-1} \\ \hat{\mathbf{P}}_m^a & \mathbf{I}_{n_m} - \mathbf{P}_m \end{pmatrix}$$

and **f** is the characterizing vector of the final states in subgraph m, and **A** and **B** are obtained from transient probabilities in all subgraphs.

For single-clock DTA, reachability probabilities in (our) PDPs are characterized by the least solution of a linear equation system, whose coefficients are solutions of ODEs (= transient probabilities in CTMCs).

Systems biology: immune-receptor signaling

[Goldstein et. al., Nat. Reviews Immunology, 2004]

Systems biology: immune-receptor signaling

- ► *M* ligands can react with a receptor *R* with rate k₊₁ yielding a ligand-receptor LR
- ▶ LR undergoes a sequence of N modifications with a constant rate k_p yielding B_1, \ldots, B_N
- ▶ LR B_N can link with an inactive messenger with rate k_{+x} yielding a ligand-receptor-messenger (LRM).
- ▶ The LRM decomposes into an active messenger with rate k_{cat}

Verification results

	#CTMC	No lumping		With lumping			
М	states	$\# \otimes states$	time(s)	#blocks	time(s)	%transient	%lumping
1	18	31	0	13	0	0%	0%
2	150	203	0.06	56	0.05	58%	39%
3	774	837	1.36	187	0.84	64%	30%
4	3024	2731	17.29	512	9.19	73%	24%
5	9756	7579	152.54	1213	73.4	76%	21%
6	27312	18643	1547.45	2579	457.35	78%	20%
7	68496	41743	11426.46	5038	3185.6	85%	14%
8	157299	86656	23356.5	9200	11950.8	81%	18%
9	336049	169024	71079.15	15906	38637.28	76%	22%
10	675817	312882	205552.36	26256	116314.41	71%	26%

In the case of no lumping, 99% of time is spent on transient analysis

Multi-multi-core model checking

	4 Co	ores	20 Cores		
N	time(s)	speedup	time(s)	speedup	
3	0.45	3.03	0.42	3.22	
4	5.3	3.26	3.44	5.02	
5	44.73	3.41	15.87	9.61	
6	620.16	2.50	160.58	9.64	
7	4142.19	2.76	949.32	12.04	
8	8168.62	2.86	1722.63	13.56	
9	23865.17	2.98	5457.01	13.03	
10	70623.46	2.91	16699.22	12.31	

Parallelization of the transient analysis only; not the lumping.

Non-determinism: MDP

Non-determinism: MDP

An MDP is a DTMC in which in any state a non-deterministic choice between probability distributions exists.

Non-determinism: MDP

An MDP is a DTMC in which in any state a non-deterministic choice between probability distributions exists.

Set of enabled distributions (= colors) in state s is $Act(s) = \{ \alpha, \beta \}$ where

• $\mathbf{P}(s, \alpha, s) = \frac{1}{2}$, $\mathbf{P}(s, \alpha, t) = 0$ and $\mathbf{P}(s, \alpha, u) = \mathbf{P}(s, \alpha, v) = \frac{1}{4}$ • $\mathbf{P}(s, \beta, s) = \mathbf{P}(s, \beta, v) = 0$, and $\mathbf{P}(s, \beta, t) = \mathbf{P}(s, \beta, u) = \frac{1}{2}$

Continuous-time Markov decision processes

A CTMDP is an MDP with an *exit rate* function $r : S \times Act \rightarrow \mathbb{R}_{>0}$ where $r(s, \alpha)$ is the rate of an exponential distribution.

Continuous-time Markov decision processes

A CTMDP is an MDP with an *exit rate* function $r : S \times Act \rightarrow \mathbb{R}_{>0}$ where $r(s, \alpha)$ is the rate of an exponential distribution. State residence times thus depend on the selected distribution.

 $r(s, \alpha) = 10$ and $r(s, \beta) = 25$

Policy

Non-determinism is reduced by a policy.

Policy

Non-determinism is reduced by a policy. A policy \mathfrak{S} is a (measurable) function that takes a state and the elapsed time so far, and maps this onto a distribution (= color).

Policy

Non-determinism is reduced by a policy. A policy \mathfrak{S} is a (measurable) function that takes a state and the elapsed time so far, and maps this onto a distribution (= color).

Timed reachability

Let $G \subseteq S$ be a finite set of goal states and $t \in \mathbb{R}_{\geq 0}$ a deadline. Time-bounded reachability probability from state *s* under policy \mathfrak{S} :

$$Pr^{\mathfrak{S}}(s \models \Diamond^{\leqslant t} G) = Pr^{\mathcal{C}_{\mathfrak{S}}}_{s} \{ \pi \in Paths(s) \mid \pi \models \Diamond^{\leqslant t} G \}$$

Policy

Non-determinism is reduced by a policy. A policy \mathfrak{S} is a (measurable) function that takes a state and the elapsed time so far, and maps this onto a distribution (= color).

Timed reachability

Let $G \subseteq S$ be a finite set of goal states and $t \in \mathbb{R}_{\geq 0}$ a deadline. Time-bounded reachability probability from state *s* under policy \mathfrak{S} :

$$Pr^{\mathfrak{S}}(s \models \Diamond^{\leqslant t} \mathsf{G}) = Pr^{\mathcal{C}_{\mathfrak{S}}}_{s} \{ \pi \in Paths(s) \mid \pi \models \Diamond^{\leqslant t} \mathsf{G} \}$$

Analysis focuses on obtaining lower- and upperbounds, e.g.,

$$Pr^{\max}(s \models \Diamond^{\leq t} G) = \sup_{\mathfrak{S}} Pr^{\mathfrak{S}}(s \models \Diamond^{\leq t} G)$$

where $\ensuremath{\mathfrak{S}}$ ranges over all possible policies.

Maximal timed reachability

Characterisation of timed reachability probabilities

• Let function $x_s(t) = Pr^{\max}(s \models \Diamond^{\leq t} G)$ for any state s
- Let function $x_s(t) = Pr^{\max}(s \models \Diamond^{\leq t} G)$ for any state s
 - if G is not reachable from s, then $x_s(t) = 0$ for all t

- Let function $x_s(t) = Pr^{\max}(s \models \Diamond^{\leq t} G)$ for any state s
 - if G is not reachable from s, then $x_s(t) = 0$ for all t
 - if $s \in G$ then $x_s(t) = 1$ for all t

- Let function $x_s(t) = Pr^{\max}(s \models \Diamond^{\leq t} G)$ for any state s
 - if G is not reachable from s, then $x_s(t) = 0$ for all t
 - if $s \in G$ then $x_s(t) = 1$ for all t

• For any state
$$s \in Pre^*(G) \setminus G$$
:

- Let function $x_s(t) = Pr^{\max}(s \models \Diamond^{\leq t} G)$ for any state s
 - if G is not reachable from s, then $x_s(t) = 0$ for all t
 - if $s \in G$ then $x_s(t) = 1$ for all t
- For any state $s \in Pre^*(G) \setminus G$:

$$x_{s}(t) = \max_{\alpha \in Act(s)} \int_{0}^{t} \sum_{s' \in S} \underbrace{\mathbb{R}(s, \alpha, s') \cdot e^{-r(s, \alpha) \cdot x}}_{\text{probability to move to}} \cdot \underbrace{x_{s'}(t-x)}_{\text{max. prob.}} dx$$

$$\sup_{state s' \text{ at time } x}_{\text{under action } \alpha} \quad to \text{ fulfill } \Diamond^{\leqslant t-x} G$$

▶ Timed policies are optimal; any time-abstract policy is inferior.

Timed policies are optimal; any time-abstract policy is inferior.

• If long time remains: choose β ; if short time remains: choose α .

Timed policies are optimal; any time-abstract policy is inferior.

- If long time remains: choose β ; if short time remains: choose α .
- Optimal policy for t=1: choose α if $1-t_0 \leq \ln 3 \ln 2$, otherwise β

Discretisation

Continuous-time MDP ${\mathcal C}$

Exponential distributions

Reachability in *d* time

 \approx

Discrete-time MDP C_{τ}

Discrete probability distributions

Reachability in
$$\frac{d}{\tau}$$
 steps

Checking CTMDPs against DTA objectives

Problem statement:

Given model CTMDP C and specification DTA A, determine the maximal fraction of runs in C that satisfying A:

$$Pr^{\max}(\mathcal{C} \models \mathcal{A}) := sup_{\mathfrak{S}} Pr^{\mathfrak{S}} \{ \text{Paths in } \mathcal{C} \text{ accepted by } \mathcal{A} \}$$

Checking CTMDPs against DTA objectives

Problem statement:

Given model CTMDP C and specification DTA A, determine the maximal fraction of runs in C that satisfying A:

 $Pr^{\max}(\mathcal{C} \models \mathcal{A}) := sup_{\mathfrak{S}} Pr^{\mathfrak{S}} \{ \text{Paths in } \mathcal{C} \text{ accepted by } \mathcal{A} \}$

Characterizing the maximal probability of $\mathcal{C} \models$.

1. $Pr^{max}(\mathcal{C} \models \mathcal{A})$ equals the maximal probability of accepting paths in $\mathcal{C} \otimes \mathcal{A}$.

Checking CTMDPs against DTA objectives

Problem statement:

Given model CTMDP C and specification DTA A, determine the maximal fraction of runs in C that satisfying A:

 $Pr^{\max}(\mathcal{C} \models \mathcal{A}) := sup_{\mathfrak{S}} Pr^{\mathfrak{S}} \{ \text{Paths in } \mathcal{C} \text{ accepted by } \mathcal{A} \}$

Characterizing the maximal probability of $\mathcal{C} \models$.

Pr^{max}(C ⊨ A) equals the maximal probability of accepting paths in C ⊗ A.
 equals the maximal probability of accepting paths in C ⊗ ZG(A).

One-clock DTA: characterizing $Pr^{max}(\mathcal{C} \models \mathcal{A})$

One-clock DTA: characterizing $Pr^{max}(\mathcal{C} \models \mathcal{A})$

Verifying a CTMC against a 1-clock DTA

 $Pr(\mathcal{C} \models \mathcal{A})$ can be characterised as the unique solution of a linear equation system whose coefficients are transient probabilities in CTMC \mathcal{C} .

One-clock DTA: characterizing $Pr^{max}(\mathcal{C} \models \mathcal{A})$

Verifying a CTMC against a 1-clock DTA

 $Pr(\mathcal{C} \models \mathcal{A})$ can be characterised as the unique solution of a linear equation system whose coefficients are transient probabilities in CTMC \mathcal{C} .

Verifying a CTMDP against a 1-clock DTA

 $Pr^{\max}(\mathcal{C} \models \mathcal{A})$ can be characterised as the unique solution of a linear inequation system whose coefficients are maximal timed reachability probabilities in CTMDP \mathcal{C} .

For details, please consult the paper in the RP'11 proceedings.

Related work

- Observers for timed automata (Aceto et al. JLAP 2003)
- ► Timed automata for GSMPs (Brazdil *et al.* HSCC 2011)
- PTCTL model checking of PTA (Kwiatkowska et el. TCS 2002)
- ► CSL with regular expressions (Baier *et al.* IEEE TSE 2007)
 - CSL with one-clock DTA as time constraints
 - for single-clock DTA, our results coincide
 - ... but we obtain the results in a different manner

Probabilistic semantics of TA

(Baier et al. LICS 2008)

(Donatelli et al. IEEE TSE 2009)

Take-home messages

• Timed reachability in a CTMC C = transient analysis of C

- Timed reachability in a CTMC C = transient analysis of C
- DTA acceptance of a CTMC C = reachability probability in a PDP

- Timed reachability in a CTMC C = transient analysis of C
- DTA acceptance of a CTMC C = reachability probability in a PDP
- Efficient numerical algorithm for 1-clock DTA:
 - using standard means: zone graph construction, graph analysis, transient analysis, linear equation systems.

- Timed reachability in a CTMC C = transient analysis of C
- DTA acceptance of a CTMC C = reachability probability in a PDP
- Efficient numerical algorithm for 1-clock DTA:
 - using standard means: zone graph construction, graph analysis, transient analysis, linear equation systems.
 - three orders of magnitude faster than alternative approaches.

- Timed reachability in a CTMC C = transient analysis of C
- DTA acceptance of a CTMC C = reachability probability in a PDP
- Efficient numerical algorithm for 1-clock DTA:
 - using standard means: zone graph construction, graph analysis, transient analysis, linear equation systems.
 - three orders of magnitude faster than alternative approaches.
 - natural support for parallelisation and bisimulation minimisation.

- Timed reachability in a CTMC C = transient analysis of C
- DTA acceptance of a CTMC C = reachability probability in a PDP
- Efficient numerical algorithm for 1-clock DTA:
 - using standard means: zone graph construction, graph analysis, transient analysis, linear equation systems.
 - three orders of magnitude faster than alternative approaches.
 - natural support for parallelisation and bisimulation minimisation.
- Discretization approach for multiple-clock DTA with error bounds.

- Timed reachability in a CTMC C = transient analysis of C
- DTA acceptance of a CTMC C = reachability probability in a PDP
- Efficient numerical algorithm for 1-clock DTA:
 - using standard means: zone graph construction, graph analysis, transient analysis, linear equation systems.
 - three orders of magnitude faster than alternative approaches.
 - natural support for parallelisation and bisimulation minimisation.
- Discretization approach for multiple-clock DTA with error bounds.
- ► For CTMDPs: similar approach using linear inequations.

- Timed reachability in a CTMC C = transient analysis of C
- DTA acceptance of a CTMC C = reachability probability in a PDP
- Efficient numerical algorithm for 1-clock DTA:
 - using standard means: zone graph construction, graph analysis, transient analysis, linear equation systems.
 - three orders of magnitude faster than alternative approaches.
 - natural support for parallelisation and bisimulation minimisation.
- Discretization approach for multiple-clock DTA with error bounds.
- ► For CTMDPs: similar approach using linear inequations.
- Prototypical tool-support for 1-clock DTA (to be in PRISM).