Observing Stochastic Processes by Timed Automata

Joost-Pieter Katoen

RWTH Aachen University
Software Modeling and Verification Group
http://moves.rwth-aachen.de
Workshop on Reachability Problems, Genova, 2011
> joint work with Benoît Barbot, Taolue Chen,
> Tingting Han and Alexandru Mereacre

September 25, 2011

Let's start easy

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple $\left(S, \mathbf{P}, \iota_{\text {init }}\right)$ with:

- S is a countable nonempty set of states

Let's start easy

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple $\left(S, \mathbf{P}, \iota_{\text {init }}\right)$ with:

- S is a countable nonempty set of states
- $\mathbf{P}: S \times S \rightarrow[0,1]$, transition probability function s.t. $\sum_{s^{\prime}} \mathbf{P}\left(s, s^{\prime}\right)=1$

Let's start easy

Discrete-time Markov chain

A DTMC \mathcal{D} is a tuple $\left(S, \mathbf{P}, \iota_{\text {init }}\right)$ with:

- S is a countable nonempty set of states
- $\mathbf{P}: S \times S \rightarrow[0,1]$, transition probability function s.t. $\sum_{s^{\prime}} \mathbf{P}\left(s, s^{\prime}\right)=1$
- $\iota_{\text {init }}: S \rightarrow[0,1]$, the initial distribution with $\sum_{s \in S} \iota_{\text {init }}(s)=1$

Initial states

- $\iota_{\text {init }}(s)$ is the probability that DTMC \mathcal{D} starts in state s
- the set $\left\{s \in S \mid \iota_{\text {init }}(s)>0\right\}$ are the possible initial states.

Simulating a die by a fair coin [Knuth \& Yao]

Heads = "go left"; tails = "go right".

Simulating a die by a fair coin [Knuth \& Yao]

Heads = "go left"; tails = "go right". Does this DTMC adequately model a fair six-sided die?

Some events of interest

(Simple) reachability

Eventually reach a state in $G \subseteq S$.

Some events of interest

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$
\diamond G=\{\pi \in \operatorname{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N} . \pi[i] \in G\}
$$

Some events of interest

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$
\diamond G=\{\pi \in \operatorname{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N} . \pi[i] \in G\}
$$

Invariance, i.e., always stay in state in G :

$$
\square G=\{\pi \in \operatorname{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N} . \pi[i] \in G\}=\overline{\diamond \bar{G}} .
$$

Some events of interest

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$
\diamond G=\{\pi \in \operatorname{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N} . \pi[i] \in G\}
$$

Invariance, i.e., always stay in state in G :

$$
\square G=\{\pi \in \operatorname{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N} . \pi[i] \in G\}=\overline{\diamond \bar{G}} .
$$

Constrained reachability

Some events of interest

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$
\diamond G=\{\pi \in \operatorname{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N} . \pi[i] \in G\}
$$

Invariance, i.e., always stay in state in G :

$$
\square G=\{\pi \in \operatorname{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N} . \pi[i] \in G\}=\overline{\diamond \bar{G}}
$$

Constrained reachability

Or "reach-avoid" properties where states in $F \subseteq S$ are forbidden:

Some events of interest

(Simple) reachability

Eventually reach a state in $G \subseteq S$. Formally:

$$
\diamond G=\{\pi \in \operatorname{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N} . \pi[i] \in G\}
$$

Invariance, i.e., always stay in state in G :

$$
\square G=\{\pi \in \operatorname{Paths}(\mathcal{D}) \mid \forall i \in \mathbb{N} . \pi[i] \in G\}=\overline{\diamond \bar{G}}
$$

Constrained reachability

Or "reach-avoid" properties where states in $F \subseteq S$ are forbidden:

$$
\bar{F} \cup G=\{\pi \in \operatorname{Paths}(\mathcal{D}) \mid \exists i \in \mathbb{N} . \pi[i] \in G \wedge \forall j<i . \pi[j] \notin F\}
$$

In a similar way, $\square \diamond G$ and $\diamond \square G$ are defined.

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space $S, s \in S$ and $G \subseteq S$.

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space $S, s \in S$ and $G \subseteq S$.
Aim: determine $\operatorname{Pr}(s \models \diamond G)=\operatorname{Pr}_{s}\{\pi \in \operatorname{Paths}(s) \mid \pi \in \diamond G\}$.

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space $S, s \in S$ and $G \subseteq S$.
Aim: determine $\operatorname{Pr}(s \models \diamond G)=\operatorname{Pr}_{s}\{\pi \in \operatorname{Paths}(s) \mid \pi \in \diamond G\}$.

Characterisation of reachability probabilities

- Let variable $x_{s}=\operatorname{Pr}(s \vDash \diamond G)$ for any state s

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space $S, s \in S$ and $G \subseteq S$.
Aim: determine $\operatorname{Pr}(s \models \diamond G)=\operatorname{Pr}_{s}\{\pi \in \operatorname{Paths}(s) \mid \pi \in \diamond G\}$.

Characterisation of reachability probabilities

- Let variable $x_{s}=\operatorname{Pr}(s \models \diamond G)$ for any state s
- if G is not reachable from s, then $x_{s}=0$

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space $S, s \in S$ and $G \subseteq S$.
Aim: determine $\operatorname{Pr}(s \models \diamond G)=\operatorname{Pr}_{s}\{\pi \in \operatorname{Paths}(s) \mid \pi \in \diamond G\}$.

Characterisation of reachability probabilities

- Let variable $x_{s}=\operatorname{Pr}(s \models \diamond G)$ for any state s
- if G is not reachable from s, then $x_{s}=0$
- if $s \in G$ then $x_{s}=1$

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space $S, s \in S$ and $G \subseteq S$.
Aim: determine $\operatorname{Pr}(s \models \diamond G)=\operatorname{Pr}_{s}\{\pi \in \operatorname{Paths}(s) \mid \pi \in \diamond G\}$.

Characterisation of reachability probabilities

- Let variable $x_{s}=\operatorname{Pr}(s \vDash \diamond G)$ for any state s
- if G is not reachable from s, then $x_{s}=0$
- if $s \in G$ then $x_{s}=1$
- For any state $s \in \operatorname{Pre}^{*}(G) \backslash G$:

Reachability probabilities in finite DTMCs

Problem statement

Let \mathcal{D} be a DTMC with finite state space $S, s \in S$ and $G \subseteq S$.
Aim: determine $\operatorname{Pr}(s \models \diamond G)=\operatorname{Pr}_{s}\{\pi \in \operatorname{Paths}(s) \mid \pi \in \diamond G\}$.

Characterisation of reachability probabilities

- Let variable $x_{s}=\operatorname{Pr}(s \vDash \diamond G)$ for any state s
- if G is not reachable from s, then $x_{s}=0$
- if $s \in G$ then $x_{s}=1$
- For any state $s \in \operatorname{Pre}^{*}(G) \backslash G$:

$$
x_{s}=\underbrace{\sum_{t \in S \backslash G} \mathbf{P}(s, t) \cdot x_{t}}_{\text {reach } G \text { via } t \in S \backslash G}+\underbrace{\sum_{u \in G} \mathbf{P}(s, u)}_{\text {reach } G \text { in one step }}
$$

Reachability probabilities: Knuth's die

- Consider the event $\diamond 4$

Reachability probabilities: Knuth's die

- Consider the event $\diamond 4$
- Using the previous characterisation we obtain:
$x_{1}=x_{2}=x_{3}=x_{5}=x_{6}=0$ and $x_{4}=1$

Reachability probabilities: Knuth's die

- Consider the event $\diamond 4$
- Using the previous characterisation we obtain:

$$
\begin{aligned}
& x_{1}=x_{2}=x_{3}=x_{5}=x_{6}=0 \text { and } x_{4}=1 \\
& x_{s_{1}}=x_{s_{3}}=x_{s_{4}}=0
\end{aligned}
$$

Reachability probabilities: Knuth's die

- Consider the event $\diamond 4$
- Using the previous characterisation we obtain:

$$
\begin{aligned}
& x_{1}=x_{2}=x_{3}=x_{5}=x_{6}=0 \text { and } x_{4}=1 \\
& x_{s_{1}}=x_{s_{3}}=x_{s_{4}}=0 \\
& x_{s_{0}}=\frac{1}{2} x_{s_{1}}+\frac{1}{2} x_{s_{2}}
\end{aligned}
$$

Reachability probabilities: Knuth's die

- Consider the event $\diamond 4$
- Using the previous characterisation we obtain:

$$
\begin{aligned}
& x_{1}=x_{2}=x_{3}=x_{5}=x_{6}=0 \text { and } x_{4}=1 \\
& x_{s_{1}}=x_{s_{3}}=x_{s_{4}}=0 \\
& x_{s_{0}}=\frac{1}{2} x_{s_{1}}+\frac{1}{2} x_{s_{2}} \\
& x_{s_{2}}=\frac{1}{2} x_{s_{5}}+\frac{1}{2} x_{s_{6}}
\end{aligned}
$$

Reachability probabilities: Knuth's die

- Consider the event $\diamond 4$
- Using the previous characterisation we obtain:

$$
\begin{aligned}
& x_{1}=x_{2}=x_{3}=x_{5}=x_{6}=0 \text { and } x_{4}=1 \\
& x_{s_{1}}=x_{s_{3}}=x_{s_{4}}=0 \\
& x_{s_{0}}=\frac{1}{2} x_{s_{1}}+\frac{1}{2} x_{s_{2}} \\
& x_{s_{2}}=\frac{1}{2} x_{s_{5}}+\frac{1}{2} x_{s_{6}} \\
& x_{s_{5}}=\frac{1}{2} x_{5}+\frac{1}{2} x_{4}
\end{aligned}
$$

Reachability probabilities: Knuth's die

- Consider the event $\diamond 4$
- Using the previous characterisation we obtain:

$$
\begin{aligned}
& x_{1}=x_{2}=x_{3}=x_{5}=x_{6}=0 \text { and } x_{4}=1 \\
& x_{s_{1}}=x_{s_{3}}=x_{s_{4}}=0 \\
& x_{s_{0}}=\frac{1}{2} x_{s_{1}}+\frac{1}{2} x_{s_{2}} \\
& x_{s_{2}}=\frac{1}{2} x_{s_{5}}+\frac{1}{2} x_{s_{6}} \\
& x_{s_{5}}=\frac{1}{2} x_{5}+\frac{1}{2} x_{4} \\
& x_{s_{6}}=\frac{1}{2} x_{s_{2}}+\frac{1}{2} x_{6}
\end{aligned}
$$

Reachability probabilities: Knuth's die

- Consider the event $\diamond 4$
- Using the previous characterisation we obtain:
$x_{1}=x_{2}=x_{3}=x_{5}=x_{6}=0$ and $x_{4}=1$
$x_{s_{1}}=x_{s_{3}}=x_{s_{4}}=0$
$x_{s_{0}}=\frac{1}{2} x_{s_{1}}+\frac{1}{2} x_{s_{2}}$
$x_{s_{2}}=\frac{1}{2} x_{s_{5}}+\frac{1}{2} x_{s_{6}}$
$x_{5_{5}}=\frac{1}{2} x_{5}+\frac{1}{2} x_{4}$
$x_{s_{6}}=\frac{1}{2} x_{s_{2}}+\frac{1}{2} x_{6}$
- Gaussian elimination yields:

$$
x_{s_{5}}=\frac{1}{2}, x_{s_{2}}=\frac{1}{3}, x_{s_{6}}=\frac{1}{6}, \text { and } x_{s_{0}}=\frac{1}{6}
$$

Linear equation system

Reachability probabilities as linear equation system

Linear equation system

Reachability probabilities as linear equation system

- Let $S_{\text {? }}=\operatorname{Pre}^{*}(G) \backslash G$, the states that can reach G by >0 steps

Linear equation system

Reachability probabilities as linear equation system

- Let $S_{\text {? }}=\operatorname{Pre}^{*}(G) \backslash G$, the states that can reach G by >0 steps
- $\mathbf{A}=(\mathbf{P}(s, t))_{s, t \in S_{?}}$, the transition probabilities in $S_{\text {? }}$

Linear equation system

Reachability probabilities as linear equation system

- Let $S_{\text {? }}=\operatorname{Pre}^{*}(G) \backslash G$, the states that can reach G by >0 steps
- $\mathbf{A}=(\mathbf{P}(s, t))_{s, t \in S_{?}}$, the transition probabilities in $S_{\text {? }}$
- $\mathbf{b}=\left(b_{s}\right)_{s \in S_{?}}$, the probs to reach G in 1 step, i.e., $b_{s}=\sum_{u \in G} \mathbf{P}(s, u)$

Linear equation system

Reachability probabilities as linear equation system

- Let $S_{\text {? }}=\operatorname{Pre}^{*}(G) \backslash G$, the states that can reach G by >0 steps
- $\mathbf{A}=(\mathbf{P}(s, t))_{s, t \in S_{?}}$, the transition probabilities in $S_{\text {? }}$
- $\mathbf{b}=\left(b_{s}\right)_{s \in S_{?}}$, the probs to reach G in 1 step, i.e., $b_{s}=\sum_{u \in G} \mathbf{P}(s, u)$

Then: $\mathbf{x}=\left(x_{s}\right)_{s \in S_{?}}$ with $x_{s}=\operatorname{Pr}(s \models \diamond G)$ is the unique solution of:

Linear equation system

Reachability probabilities as linear equation system

- Let $S_{\text {? }}=\operatorname{Pre}^{*}(G) \backslash G$, the states that can reach G by >0 steps
- $\mathbf{A}=(\mathbf{P}(s, t))_{s, t \in S_{?}}$, the transition probabilities in $S_{\text {? }}$
- $\mathbf{b}=\left(b_{s}\right)_{s \in S_{?}}$, the probs to reach G in 1 step, i.e., $b_{s}=\sum_{u \in G} \mathbf{P}(s, u)$

Then: $\mathbf{x}=\left(x_{s}\right)_{s \in S_{?}}$ with $x_{s}=\operatorname{Pr}(s \models \diamond G)$ is the unique solution of:

$$
\mathbf{x}=\mathbf{A} \cdot \mathbf{x}+\mathbf{b} \text { or }(\mathbf{I}-\mathbf{A}) \cdot \mathbf{x}=\mathbf{b}
$$

where \boldsymbol{I} is the identity matrix of cardinality $\left|S_{?}\right| \times\left|S_{?}\right|$.

Repeated reachability and persistence

Long-run theorem

Repeated reachability and persistence

Long-run theorem

Almost surely any finite DTMC eventually reaches a BSCC and visits all its states infinitely often.

Repeated reachability and persistence

Long-run theorem

Almost surely any finite DTMC eventually reaches a BSCC and visits all its states infinitely often.

Repeated reachability $=$ Reachability

For finite DTMC with state space $S, G \subseteq S$, and $s \in S$:
$\operatorname{Pr}(s \models \square \diamond G)=\operatorname{Pr}(s \models \diamond U)$ where U is the union of all BSCCs T with $T \cap G \neq \varnothing$.

Repeated reachability and persistence

Long-run theorem

Almost surely any finite DTMC eventually reaches a BSCC and visits all its states infinitely often.

Repeated reachability $=$ Reachability

For finite DTMC with state space $S, G \subseteq S$, and $s \in S$:
$\operatorname{Pr}(s \models \square \diamond G)=\operatorname{Pr}(s \models \diamond U)$
where U is the union of all BSCCs T with $T \cap G \neq \varnothing$.

Persistency $=$ Reachability

For finite DTMC with state space $S, G \subseteq S$, and $s \in S$:
$\operatorname{Pr}(s \models \diamond \square G)=\operatorname{Pr}(s \models \diamond U)$
where U is the union of all BSCCs T with $T \subseteq G$.

Verifying ω-regular objectives $=$ Reachability

Verifying ω-regular objectives $=$ Reachability

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, s a state in \mathcal{D}, \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set $\left\{\left(L_{1}, K_{1}\right), \ldots,\left(L_{n}, K_{n}\right)\right\}$.

Verifying ω-regular objectives $=$ Reachability

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, s a state in \mathcal{D}, \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set $\left\{\left(L_{1}, K_{1}\right), \ldots,\left(L_{n}, K_{n}\right)\right\}$. Then:

$$
\operatorname{Pr}^{\mathcal{D}}(s \models \mathcal{A})=\operatorname{Pr}^{\mathcal{D} \otimes \mathcal{A}}\left(\left\langle s, q_{s}\right\rangle \models \diamond U\right) \quad \text { where } q_{s}=\delta\left(q_{0}, L(s)\right) \text {. }
$$

Verifying ω-regular objectives $=$ Reachability

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, s a state in \mathcal{D}, \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set $\left\{\left(L_{1}, K_{1}\right), \ldots,\left(L_{n}, K_{n}\right)\right\}$. Then:

$$
\operatorname{Pr}^{\mathcal{D}}(s \models \mathcal{A})=\operatorname{Pr}^{\mathcal{D} \otimes \mathcal{A}}\left(\left\langle s, q_{s}\right\rangle \models \diamond U\right) \quad \text { where } q_{s}=\delta\left(q_{0}, L(s)\right) .
$$

where U is the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

Verifying ω-regular objectives $=$ Reachability

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, s a state in \mathcal{D}, \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set $\left\{\left(L_{1}, K_{1}\right), \ldots,\left(L_{n}, K_{n}\right)\right\}$. Then:

$$
\operatorname{Pr}^{\mathcal{D}}(s \models \mathcal{A})=\operatorname{Pr}^{\mathcal{D} \otimes \mathcal{A}}\left(\left\langle s, q_{s}\right\rangle \models \diamond U\right) \quad \text { where } q_{s}=\delta\left(q_{0}, L(s)\right) .
$$

where U is the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$. BSCC $T \subseteq S \times Q$ is accepting if $T \cap\left(S \times L_{i}\right)=\varnothing$ and $T \cap\left(S \times K_{i}\right) \neq \varnothing$ for some i.

Synchronous product construction

DTMC D
with state space S

nath

DRA \mathcal{A} with state space Q

Synchronous product construction \otimes

Verifying ω-regular objectives $=$ Reachability

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, s a state in \mathcal{D}, \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set $\left\{\left(L_{1}, K_{1}\right), \ldots,\left(L_{n}, K_{n}\right)\right\}$. Then:

$$
\operatorname{Pr}^{\mathcal{D}}(s \models \mathcal{A})=\operatorname{Pr}^{\mathcal{D} \otimes \mathcal{A}}\left(\left\langle s, q_{s}\right\rangle \models \diamond U\right) \quad \text { where } q_{s}=\delta\left(q_{0}, L(s)\right) .
$$

where U is the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

Verifying ω-regular objectives $=$ Reachability

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, s a state in \mathcal{D}, \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set $\left\{\left(L_{1}, K_{1}\right), \ldots,\left(L_{n}, K_{n}\right)\right\}$. Then:

$$
\operatorname{Pr}^{\mathcal{D}}(s \models \mathcal{A})=\operatorname{Pr}^{\mathcal{D} \otimes \mathcal{A}}\left(\left\langle s, q_{s}\right\rangle \models \diamond U\right) \quad \text { where } q_{s}=\delta\left(q_{0}, L(s)\right) .
$$

where U is the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

Thus the computation of probabilities for satisfying ω-regular properties boils down to computing the reachability probabilities for certain BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

Verifying ω-regular objectives $=$ Reachability

Verifying DRA objectives theorem

Let \mathcal{D} be a finite DTMC, s a state in \mathcal{D}, \mathcal{A} a DRA (deterministic Rabin automaton) with acceptance set $\left\{\left(L_{1}, K_{1}\right), \ldots,\left(L_{n}, K_{n}\right)\right\}$. Then:

$$
\operatorname{Pr}^{\mathcal{D}}(s \models \mathcal{A})=\operatorname{Pr}^{\mathcal{D} \otimes \mathcal{A}}\left(\left\langle s, q_{s}\right\rangle \models \diamond U\right) \quad \text { where } q_{s}=\delta\left(q_{0}, L(s)\right) .
$$

where U is the union of all accepting BSCCs in $\mathcal{D} \otimes \mathcal{A}$.

Thus the computation of probabilities for satisfying ω-regular properties boils down to computing the reachability probabilities for certain BSCCs in $\mathcal{D} \otimes \mathcal{A}$. A graph analysis and solving systems of linear equations suffice.

Random timing

Negative exponential distribution

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
f_{Y}(x)=\lambda \cdot e^{-\lambda \cdot x} \quad \text { for } x>0 \quad \text { and } f_{Y}(x)=0 \text { otherwise }
$$

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
f_{Y}(x)=\lambda \cdot e^{-\lambda \cdot x} \quad \text { for } x>0 \quad \text { and } f_{Y}(x)=0 \text { otherwise }
$$

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
F_{Y}(d)=\int_{0}^{d} \lambda \cdot e^{-\lambda \cdot x} d x=\left[-e^{-\lambda \cdot x}\right]_{0}^{d}=1-e^{-\lambda \cdot d} .
$$

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
f_{Y}(x)=\lambda \cdot e^{-\lambda \cdot x} \quad \text { for } x>0 \quad \text { and } f_{Y}(x)=0 \text { otherwise }
$$

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
F_{Y}(d)=\int_{0}^{d} \lambda \cdot e^{-\lambda \cdot x} d x=\left[-e^{-\lambda \cdot x}\right]_{0}^{d}=1-e^{-\lambda \cdot d} .
$$

The rate $\lambda \in \mathbb{R}_{>0}$ uniquely determines an exponential distribution.

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
f_{Y}(x)=\lambda \cdot e^{-\lambda \cdot x} \quad \text { for } x>0 \quad \text { and } f_{Y}(x)=0 \text { otherwise }
$$

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
F_{Y}(d)=\int_{0}^{d} \lambda \cdot e^{-\lambda \cdot x} d x=\left[-e^{-\lambda \cdot x}\right]_{0}^{d}=1-e^{-\lambda \cdot d} .
$$

The rate $\lambda \in \mathbb{R}_{>0}$ uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate $\lambda \in \mathbb{R}_{>0}$. Then:

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
f_{Y}(x)=\lambda \cdot e^{-\lambda \cdot x} \quad \text { for } x>0 \quad \text { and } f_{Y}(x)=0 \text { otherwise }
$$

The cumulative distribution of r.v. Y with rate $\lambda \in \mathbb{R}_{>0}$ is:

$$
F_{Y}(d)=\int_{0}^{d} \lambda \cdot e^{-\lambda \cdot x} d x=\left[-e^{-\lambda \cdot x}\right]_{0}^{d}=1-e^{-\lambda \cdot d} .
$$

The rate $\lambda \in \mathbb{R}_{>0}$ uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate $\lambda \in \mathbb{R}_{>0}$. Then:
Expectation $E[Y]=\frac{1}{\lambda}$ and variance $\operatorname{Var}[Y]=\frac{1}{\lambda^{2}}$

Exponential pdf and cdf

The higher λ, the faster the cdf approaches 1 .

Continuous-time Markov chains

A CTMC is a DTMC with an exit rate function $r: S \rightarrow \mathbb{R}_{>0}$ where $r(s)$ is the rate of an exponential distribution.

$$
r(s)=25, r(t)=4, r(u)=2 \text { and } r(v)=100
$$

Example: a classical perspective

A CTMC is a DTMC with an exit rate function $r: S \rightarrow \mathbb{R}_{>0}$ where $r(s)$ is the rate of an exponential distribution.

Example: a classical perspective

A CTMC is a DTMC with an exit rate function $r: S \rightarrow \mathbb{R}_{>0}$ where $r(s)$ is the rate of an exponential distribution.

A CTMC is a DTMC where transition probability function \mathbf{P} is replaced by a transition rate function \mathbf{R}.

Example: a classical perspective

A CTMC is a DTMC with an exit rate function $r: S \rightarrow \mathbb{R}_{>0}$ where $r(s)$ is the rate of an exponential distribution.

A CTMC is a DTMC where transition probability function \mathbf{P} is replaced by a transition rate function \mathbf{R}. We have $\mathbf{R}\left(s, s^{\prime}\right)=\mathbf{P}\left(s, s^{\prime}\right) \cdot r(s)$.

$$
r(s)=25, r(t)=4, r(u)=2 \text { and } r(v)=100
$$

CTMC semantics

CTMC semantics

State-to-state timed transition probability

The probability to move from non-absorbing s to s^{\prime} in $[0, t]$ is:

$$
\frac{\mathbf{R}\left(s, s^{\prime}\right)}{r(s)} \cdot\left(1-e^{-r(s) \cdot t}\right) .
$$

CTMC semantics

State-to-state timed transition probability

The probability to move from non-absorbing s to s^{\prime} in $[0, t]$ is:

$$
\frac{\mathbf{R}\left(s, s^{\prime}\right)}{r(s)} \cdot\left(1-e^{-r(s) \cdot t}\right)
$$

Residence time distribution

The probability to take some outgoing transition from s in $[0, t]$ is:

$$
\int_{0}^{t} r(s) \cdot e^{-r(s) \cdot x} d x=1-e^{-r(s) \cdot t}
$$

CTMCs are omnipresent!

- Markovian queueing networks
- Stochastic Petri nets
(Molloy 1977)
- Stochastic activity networks
(Meyer \& Sanders 1985)
- Stochastic process algebra
(Herzog et al., Hillston 1993)
- Probabilistic input/output automata
- Calculi for biological systems (Smolka et al. 1994)

CTMCs are omnipresent!

- Markovian queueing networks
- Stochastic Petri nets
(Molloy 1977)
- Stochastic activity networks
- Stochastic process algebra
(Herzog et al., Hillston 1993)
- Probabilistic input/output automata (Smolka et al. 1994)
- Calculi for biological systems
(Priami et al., Cardelli 2002)
CTMCs are one of the most prominent models in performance analysis

Paths in a CTMC

Timed paths

Paths in CTMC \mathcal{C} are maximal (i.e., infinite) paths of alternating states and time instants:

Paths in a CTMC

Timed paths

Paths in CTMC \mathcal{C} are maximal (i.e., infinite) paths of alternating states and time instants:

$$
\pi=s_{0} \xrightarrow{t_{0}} s_{1} \xrightarrow{t_{1}} s_{2} \cdots
$$

such that $s_{i} \in S$ and $t_{i} \in \mathbb{R}_{>0}$.

Paths in a CTMC

Timed paths

Paths in CTMC \mathcal{C} are maximal (i.e., infinite) paths of alternating states and time instants:

$$
\pi=s_{0} \xrightarrow{t_{0}} s_{1} \xrightarrow{t_{1}} s_{2} \cdots
$$

such that $s_{i} \in S$ and $t_{i} \in \mathbb{R}_{>0}$.

Time instant t_{i} is the amount of time spent in state s_{i}.

Paths in a CTMC

Timed paths

Paths in CTMC \mathcal{C} are maximal (i.e., infinite) paths of alternating states and time instants:

$$
\pi=s_{0} \xrightarrow{t_{0}} s_{1} \xrightarrow{t_{1}} s_{2} \cdots
$$

such that $s_{i} \in S$ and $t_{i} \in \mathbb{R}_{>0}$.

Time instant t_{i} is the amount of time spent in state s_{i}.

Notations

Paths in a CTMC

Timed paths

Paths in CTMC \mathcal{C} are maximal (i.e., infinite) paths of alternating states and time instants:

$$
\pi=s_{0} \xrightarrow{t_{0}} s_{1} \xrightarrow{t_{1}} s_{2} \cdots
$$

such that $s_{i} \in S$ and $t_{i} \in \mathbb{R}_{>0}$.

Time instant t_{i} is the amount of time spent in state s_{i}.

Notations

- Let $\pi[i]:=s_{i}$ denote the $(i+1)$-st state along the timed path π.

Paths in a CTMC

Timed paths

Paths in CTMC \mathcal{C} are maximal (i.e., infinite) paths of alternating states and time instants:

$$
\pi=s_{0} \xrightarrow{t_{0}} s_{1} \xrightarrow{t_{1}} s_{2} \cdots
$$

such that $s_{i} \in S$ and $t_{i} \in \mathbb{R}_{>0}$.

Time instant t_{i} is the amount of time spent in state s_{i}.

Notations

- Let $\pi[i]:=s_{i}$ denote the $(i+1)$-st state along the timed path π.
- Let π @ t be the state occupied in π at time $t \in \mathbb{R}_{\geqslant 0}$,

Paths in a CTMC

Timed paths

Paths in CTMC \mathcal{C} are maximal (i.e., infinite) paths of alternating states and time instants:

$$
\pi=s_{0} \xrightarrow{t_{0}} s_{1} \xrightarrow{t_{1}} s_{2} \cdots
$$

such that $s_{i} \in S$ and $t_{i} \in \mathbb{R}_{>0}$.

Time instant t_{i} is the amount of time spent in state s_{i}.

Notations

- Let $\pi[i]:=s_{i}$ denote the $(i+1)$-st state along the timed path π.
- Let $\pi @ t$ be the state occupied in π at time $t \in \mathbb{R}_{\geqslant 0}$, i.e. $\pi @ t:=\pi[i]$ where i is the smallest index such that $\sum_{j=0}^{i} t_{j}>t$.

Zeno theorem

${ }^{1}$ Zeno of Elea (490-430 BC), philosopher, famed for his paradoxes.

Zeno theorem

Zeno path

Path $s_{0} \xrightarrow{t_{0}} s_{1} \xrightarrow{t_{1}} s_{2} \xrightarrow{t_{2}} s_{3} \ldots \ldots$ is called Zeno ${ }^{1}$ if $\sum_{i} t_{i}$ converges.
${ }^{1}$ Zeno of Elea (490-430 BC), philosopher, famed for his paradoxes.

Zeno theorem

Zeno path

Path $s_{0} \xrightarrow{t_{0}} s_{1} \xrightarrow{t_{1}} s_{2} \xrightarrow{t_{2}} s_{3} \ldots \ldots$ is called Zeno ${ }^{1}$ if $\sum_{i} t_{i}$ converges.

Example

$$
s_{0} \xrightarrow{1} s_{1} \xrightarrow{\frac{1}{2}} s_{2} \xrightarrow{\frac{1}{4}} s_{3} \ldots s_{i} \xrightarrow{\frac{1}{2^{i}}} s_{i+1} \ldots
$$

${ }^{1}$ Zeno of Elea (490-430 BC), philosopher, famed for his paradoxes.

Zeno theorem

Zeno path

Path $s_{0} \xrightarrow{t_{0}} s_{1} \xrightarrow{t_{1}} s_{2} \xrightarrow{t_{2}} s_{3} \ldots \ldots$ is called Zeno ${ }^{1}$ if $\sum_{i} t_{i}$ converges.

Example

$$
s_{0} \xrightarrow{1} s_{1} \xrightarrow{\frac{1}{2}} s_{2} \xrightarrow{\frac{1}{4}} s_{3} \ldots s_{i} \xrightarrow{\frac{1}{2^{i}}} s_{i+1} \ldots
$$

In timed automata, such executions are typically excluded from the analysis.

Zeno theorem

For all states s in any CTMC, $\operatorname{Pr}\{\pi \in \operatorname{Paths}(s) \mid \pi$ is Zeno $\}=0$.
${ }^{1}$ Zeno of Elea (490-430 BC), philosopher, famed for his paradoxes.

Timed reachability events

Timed reachability events

Let CTMC \mathcal{C} with (possibly infinite) state space S.

Timed reachability events

Let CTMC \mathcal{C} with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I.

Timed reachability events

Let CTMC \mathcal{C} with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I. Formally:

$$
\nabla^{\prime} G=\{\pi \in \operatorname{Paths}(\mathcal{C}) \mid \exists t \in I . \pi @ t \in G\}
$$

Timed reachability events

Let CTMC \mathcal{C} with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I. Formally:

$$
\nabla^{\prime} G=\{\pi \in \operatorname{Paths}(\mathcal{C}) \mid \exists t \in I . \pi @ t \in G\}
$$

Invariance, i.e., always stay in state in G in the interval I:

Timed reachability events

Let CTMC \mathcal{C} with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I. Formally:

$$
\nabla^{\prime} G=\{\pi \in \operatorname{Paths}(\mathcal{C}) \mid \exists t \in I . \pi @ t \in G\}
$$

Invariance, i.e., always stay in state in G in the interval I:

$$
\square^{\prime} G=\{\pi \in \operatorname{Paths}(\mathcal{C}) \mid \forall t \in I . \pi @ t \in G\}=\overline{\diamond^{\prime} \bar{G}}
$$

Timed reachability events

Let CTMC \mathcal{C} with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I. Formally:

$$
\nabla^{\prime} G=\{\pi \in \operatorname{Paths}(\mathcal{C}) \mid \exists t \in I . \pi @ t \in G\}
$$

Invariance, i.e., always stay in state in G in the interval I:

$$
\square^{\prime} G=\{\pi \in \operatorname{Paths}(\mathcal{C}) \mid \forall t \in I . \pi @ t \in G\}=\overline{\diamond^{\prime} \bar{G}}
$$

Constrained timed reachability

Timed reachability events

Let CTMC \mathcal{C} with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I. Formally:

$$
\nabla^{\prime} G=\{\pi \in \operatorname{Paths}(\mathcal{C}) \mid \exists t \in I . \pi @ t \in G\}
$$

Invariance, i.e., always stay in state in G in the interval I:

$$
\square^{\prime} G=\{\pi \in \operatorname{Paths}(\mathcal{C}) \mid \forall t \in I . \pi @ t \in G\}=\overline{\diamond^{\prime} \bar{G}}
$$

Constrained timed reachability

Or "reach-avoid" properties where states in $F \subseteq S$ are forbidden:

Timed reachability events

Let CTMC \mathcal{C} with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in $G \subseteq S$ in the interval I. Formally:

$$
\nabla^{\prime} G=\{\pi \in \operatorname{Paths}(\mathcal{C}) \mid \exists t \in I . \pi @ t \in G\}
$$

Invariance, i.e., always stay in state in G in the interval I:

$$
\square^{\prime} G=\{\pi \in \operatorname{Paths}(\mathcal{C}) \mid \forall t \in I . \pi @ t \in G\}=\overline{\diamond^{\prime} \bar{G}}
$$

Constrained timed reachability

Or "reach-avoid" properties where states in $F \subseteq S$ are forbidden:

$$
\bar{F} U^{\prime} G=\{\pi \in \operatorname{Paths}(\mathcal{C}) \mid \exists t \in I . \pi @ t \in G \wedge \forall d<t . \pi @ d \notin F\}
$$

Measurability

Measurability

Measurability theorem

Events $\nabla^{\prime} G, \square^{\prime} G$, and $\bar{F} U^{\prime} G$ are measurable on any CTMC.

Timed reachability probabilities in finite CTMCs

Problem statement

Let \mathcal{C} be a CTMC with finite state space $S, s \in S, t \in \mathbb{R}_{\geqslant 0}$ and $G \subseteq S$.

Timed reachability probabilities in finite CTMCs

Problem statement

Let \mathcal{C} be a CTMC with finite state space $S, s \in S, t \in \mathbb{R}_{\geqslant 0}$ and $G \subseteq S$.
Aim: $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)=\operatorname{Pr}_{s}\left\{\pi \in \operatorname{Paths}(s) \mid \pi \models \diamond^{\leqslant t} G\right\}$
where Pr_{s} is the probability measure in CTMC \mathcal{C} with single initial state s.

Timed reachability probabilities in finite CTMCs

Problem statement

Let \mathcal{C} be a CTMC with finite state space $S, s \in S, t \in \mathbb{R}_{\geqslant 0}$ and $G \subseteq S$.
Aim: $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)=\operatorname{Pr}_{s}\left\{\pi \in \operatorname{Paths}(s) \mid \pi \models \diamond^{\leqslant t} G\right\}$
where $P r_{s}$ is the probability measure in CTMC \mathcal{C} with single initial state s.
Characterisation of timed reachability probabilities

- Let function $x_{s}(t)=\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ for any state s

Timed reachability probabilities in finite CTMCs

Problem statement

Let \mathcal{C} be a CTMC with finite state space $S, s \in S, t \in \mathbb{R}_{\geqslant 0}$ and $G \subseteq S$.
Aim: $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)=\operatorname{Pr}_{s}\left\{\pi \in \operatorname{Paths}(s) \mid \pi \models \diamond^{\leqslant t} G\right\}$
where Pr_{s} is the probability measure in CTMC \mathcal{C} with single initial state s.

Characterisation of timed reachability probabilities

- Let function $x_{s}(t)=\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ for any state s
- if G is not reachable from s, then $x_{s}(t)=0$ for all t

Timed reachability probabilities in finite CTMCs

Problem statement

Let \mathcal{C} be a CTMC with finite state space $S, s \in S, t \in \mathbb{R}_{\geqslant 0}$ and $G \subseteq S$.
Aim: $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)=\operatorname{Pr}_{s}\left\{\pi \in \operatorname{Paths}(s) \mid \pi \models \diamond^{\leqslant t} G\right\}$
where Pr_{s} is the probability measure in CTMC \mathcal{C} with single initial state s.

Characterisation of timed reachability probabilities

- Let function $x_{s}(t)=\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ for any state s
- if G is not reachable from s, then $x_{s}(t)=0$ for all t
- if $s \in G$ then $x_{s}(t)=1$ for all t

Timed reachability probabilities in finite CTMCs

Problem statement

Let \mathcal{C} be a CTMC with finite state space $S, s \in S, t \in \mathbb{R}_{\geqslant 0}$ and $G \subseteq S$.
Aim: $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)=\operatorname{Pr}_{s}\left\{\pi \in \operatorname{Paths}(s) \mid \pi \models \diamond^{\leqslant t} G\right\}$
where Pr_{s} is the probability measure in CTMC \mathcal{C} with single initial state s.

Characterisation of timed reachability probabilities

- Let function $x_{s}(t)=\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ for any state s
- if G is not reachable from s, then $x_{s}(t)=0$ for all t
- if $s \in G$ then $x_{s}(t)=1$ for all t
- For any state $s \in \operatorname{Pre}^{*}(G) \backslash G$:

Timed reachability probabilities in finite CTMCs

Problem statement

Let \mathcal{C} be a CTMC with finite state space $S, s \in S, t \in \mathbb{R}_{\geqslant 0}$ and $G \subseteq S$.
Aim: $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)=\operatorname{Pr}_{s}\left\{\pi \in \operatorname{Paths}(s) \mid \pi \models \diamond^{\leqslant t} G\right\}$
where Pr_{s} is the probability measure in CTMC \mathcal{C} with single initial state s.

Characterisation of timed reachability probabilities

- Let function $x_{s}(t)=\operatorname{Pr}\left(s \models \delta^{\leqslant t} G\right)$ for any state s
- if G is not reachable from s, then $x_{s}(t)=0$ for all t
- if $s \in G$ then $x_{s}(t)=1$ for all t
- For any state $s \in \operatorname{Pre}^{*}(G) \backslash G$:

$$
x_{s}(t)=\int_{0}^{t} \sum_{s^{\prime} \in S} \underbrace{\mathbf{R}\left(s, s^{\prime}\right) \cdot e^{-r(s) \cdot x}}_{\begin{array}{c}
\text { probability to move to } \\
\text { state } s^{\prime} \text { at time } x
\end{array}} \cdot \underbrace{x_{s^{\prime}}(t-x)}_{\begin{array}{c}
\text { prob. to fulfill } \\
\delta^{\leqslant t-x} G \text { from } s^{\prime}
\end{array}} d x
$$

Reachability

Reachability

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Reachability

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations.

Reachability

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations. This is in general non-trivial, inefficient, and has several pitfalls such as numerical stability.

Reachability

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations. This is in general non-trivial, inefficient, and has several pitfalls such as numerical stability.

Solution

Reduce the problem of computing $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ to an alternative problem for which well-known efficient techniques exist:

Reachability

Reachability probabilities in finite DTMCs and CTMCs

Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs

Solve a system of Volterra integral equations. This is in general non-trivial, inefficient, and has several pitfalls such as numerical stability.

Solution

Reduce the problem of computing $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ to an alternative problem for which well-known efficient techniques exist: computing transient probabilities.

Timed reachability probabilities $=$ transient probabilities

Aim

Timed reachability probabilities $=$ transient probabilities

Aim
 Compute $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ in CTMC \mathcal{C}.

Timed reachability probabilities $=$ transient probabilities

Aim

Compute $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ in CTMC \mathcal{C}. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important.

Timed reachability probabilities $=$ transient probabilities

Aim

Compute $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ in CTMC \mathcal{C}. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Timed reachability probabilities $=$ transient probabilities

Aim

Compute $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ in CTMC \mathcal{C}. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let CTMC $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}\right)$ and $G \subseteq S$.

Timed reachability probabilities $=$ transient probabilities

Aim

Compute $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ in CTMC \mathcal{C}. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let CTMC $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\mathrm{init}}\right)$ and $G \subseteq S$. The CTMC $\mathcal{C}[G]=\left(S, \mathbf{P}_{G}\right.$, $\left.r, \iota_{\text {init }}\right)$ with $\mathbf{P}_{G}(s, t)=\mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_{G}(s, s)=1$ if $s \in G$.

Timed reachability probabilities $=$ transient probabilities

Aim

Compute $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ in CTMC \mathcal{C}. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let CTMC $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}\right)$ and $G \subseteq S$. The CTMC $\mathcal{C}[G]=\left(S, \mathbf{P}_{G}\right.$, $\left.r, \iota_{\text {init }}\right)$ with $\mathbf{P}_{G}(s, t)=\mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_{G}(s, s)=1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

Timed reachability probabilities $=$ transient probabilities

Aim

Compute $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ in CTMC \mathcal{C}. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let CTMC $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}\right)$ and $G \subseteq S$. The CTMC $\mathcal{C}[G]=\left(S, \mathbf{P}_{G}\right.$, $\left.r, \iota_{\text {init }}\right)$ with $\mathbf{P}_{G}(s, t)=\mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_{G}(s, s)=1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

Lemma

$$
\underbrace{\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)}=
$$

timed reachability in \mathcal{C}

Timed reachability probabilities $=$ transient probabilities

Aim

Compute $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ in CTMC \mathcal{C}. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let CTMC $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\mathrm{init}}\right)$ and $G \subseteq S$. The CTMC $\mathcal{C}[G]=\left(S, \mathbf{P}_{G}\right.$, $\left.r, \iota_{\text {init }}\right)$ with $\mathbf{P}_{G}(s, t)=\mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_{G}(s, s)=1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

Lemma

$\underbrace{\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)}_{\text {timed reachability in } \mathcal{C}}=\underbrace{\operatorname{Pr}\left(s \models \diamond^{=t} G\right)}_{\text {timed reachability in } \mathcal{C}[G]}=$

Timed reachability probabilities $=$ transient probabilities

Aim

Compute $\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)$ in CTMC \mathcal{C}. Observe that once a path π reaches G within t time, then the remaining behaviour along π is not important. This suggests to make all states in G absorbing.

Let CTMC $\mathcal{C}=\left(S, \mathbf{P}, r, \iota_{\text {init }}\right)$ and $G \subseteq S$. The CTMC $\mathcal{C}[G]=\left(S, \mathbf{P}_{G}\right.$, $\left.r, \iota_{\text {init }}\right)$ with $\mathbf{P}_{G}(s, t)=\mathbf{P}(s, t)$ if $s \notin G$ and $\mathbf{P}_{G}(s, s)=1$ if $s \in G$.

All outgoing transitions of $s \in G$ are replaced by a single self-loop at s.

Lemma

$\underbrace{\operatorname{Pr}\left(s \models \diamond^{\leqslant t} G\right)}_{\text {timed reachability in } \mathcal{C}}=\underbrace{\operatorname{Pr}\left(s \models \diamond^{=t} G\right)}_{\text {timed reachability in } \mathcal{C}[G]}=\underbrace{p(t) \text { with } \underline{p}(0)=\mathbf{1}_{s}}_{\text {transient prob. in } \mathcal{C}[G]}$.

Transient distribution theorem

Theorem: transient distribution as ordinary differential equation

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0)
$$

where \mathbf{r} is the diagonal matrix of vector \underline{r}.

Transient distribution theorem

Theorem: transient distribution as ordinary differential equation

The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0)
$$

where \mathbf{r} is the diagonal matrix of vector \underline{r}.

Solution technique:

Transform the CTMC (again), and then truncate a Taylor-MacLaurin expansion.

Transient distribution theorem

Theorem: transient distribution as ordinary differential equation
The transient probability vector $\underline{p}(t)=\left(p_{s_{1}}(t), \ldots, p_{s_{k}}(t)\right)$ satisfies:

$$
\underline{p}^{\prime}(t)=\underline{p}(t) \cdot(\mathbf{R}-\mathbf{r}) \quad \text { given } \quad \underline{p}(0)
$$

where \mathbf{r} is the diagonal matrix of vector \underline{r}.

Solution technique:

Transform the CTMC (again), and then truncate a Taylor-MacLaurin expansion. This yields a polynomial-time approximation algorithm.

Robot navigation

Robot navigation

- The robot randomly moves through the cells, and resides in a cell for an exponentially distributed amount of time.
- Gray cells are dangerous; the robot should leave them quickly.

Robot navigation

- The robot randomly moves through the cells, and resides in a cell for an exponentially distributed amount of time.
- Gray cells are dangerous; the robot should leave them quickly.

Property:

What is the probability to reach B from A within 10 time units while residing in any dangerous zone for at most 2 time units?

Robot navigation: property

Property:

What is the probability to reach B from A within 10 time units while residing in any dangerous zone for at most 2 time units?

Deterministic timed automata

A Deterministic Timed Automaton (DTA) A is a tuple $\left(\Sigma, X, Q, q_{0}, F, \rightarrow\right)$:

- \sum-alphabet
- X - finite set of clocks
- Q - finite set of locations
- $q_{0} \in Q$ - initial location
- $F \subseteq Q$ - accept locations
- $\rightarrow \in Q \times \Sigma \times \mathcal{C}(X) \times 2^{X} \times Q$
- transition relation;

Deterministic timed automata

A Deterministic Timed Automaton (DTA) A is a tuple $\left(\Sigma, X, Q, q_{0}, F, \rightarrow\right)$:

- \sum-alphabet
- X - finite set of clocks
- Q - finite set of locations
- $q_{0} \in Q$ - initial location
- $F \subseteq Q$ - accept locations
- $\rightarrow \in Q \times \Sigma \times \mathcal{C}(X) \times 2^{X} \times Q$
- transition relation;

Determinism: $q \xrightarrow{a, g, X} q^{\prime}$ and $q \xrightarrow{\text { a, } g^{\prime}, X^{\prime}} q^{\prime \prime}$ implies $g \cap g^{\prime}=\varnothing$

What are we interested in?

Problem statement:

Given model CTMC \mathcal{C} and specification DTA \mathcal{A}, determine the fraction of runs in \mathcal{C} that satisfy \mathcal{A} :

$$
\operatorname{Pr}(\mathcal{C} \models \mathcal{A}):=\operatorname{Pr}\{\text { Paths in } \mathcal{C} \text { accepted by } \mathcal{A}\}
$$

Theoretical facts

Well-definedness

For any CTMC \mathcal{C} and DTA \mathcal{A}, the set $\{$ Paths in \mathcal{C} accepted by $\mathcal{A}\}$ is measurable.

Theoretical facts

Well-definedness

For any CTMC \mathcal{C} and DTA \mathcal{A}, the set $\{$ Paths in \mathcal{C} accepted by $\mathcal{A}\}$ is measurable.

Characterizing the probability of $\models \mathcal{A}$

$\operatorname{Pr}(\mathcal{C} \models \mathcal{A})$ equals the probability of accepting paths in $\mathcal{C} \otimes \mathcal{A}$.

Theoretical facts

Well-definedness

For any CTMC \mathcal{C} and DTA \mathcal{A}, the set $\{$ Paths in \mathcal{C} accepted by $\mathcal{A}\}$ is measurable.

Characterizing the probability of $=\mathcal{A}$

$\operatorname{Pr}(\mathcal{C} \models \mathcal{A})$ equals the probability of accepting paths in $\mathcal{C} \otimes \mathcal{A}$.

Zone graph construction

1. Reachability probabilities in $\mathcal{C} \otimes \mathcal{A}$ and $Z G(\mathcal{C} \otimes \mathcal{A})$ coincide
2. $Z G(\mathcal{C} \otimes \mathcal{A})$ and $\mathcal{C} \otimes Z G(\mathcal{A})$ are isomorphic
3. $\mathcal{C} \otimes Z G(\mathcal{A})$ is a piecewise-deterministic Markov process [Davis, 1993]

Theoretical facts

Well-definedness

For any CTMC \mathcal{C} and DTA \mathcal{A}, the set $\{$ Paths in \mathcal{C} accepted by $\mathcal{A}\}$ is measurable.

Characterizing the probability of $\models \mathcal{A}$ under finite acceptance
$\operatorname{Pr}(\mathcal{C} \models \mathcal{A})$ equals the probability of accepting paths in $\mathcal{C} \otimes Z G(\mathcal{A})$.

Characterizing the probability of $\models \mathcal{A}$ under Muller acceptance
$\operatorname{Pr}(\mathcal{C} \models \mathcal{A})$ equals the probability of accepting BSCCs in $\mathcal{C} \otimes Z G(\mathcal{A})$.

Product construction: example

An example CTMC \mathcal{C} (left) and DTA \mathcal{A} (right)

Product construction: example

An example CTMC \mathcal{C} (left up) and DTA \mathcal{A} (right up) and $\mathcal{C} \otimes Z G(\mathcal{A})$ (below)

One-clock DTA: partitioning $\mathcal{C} \otimes Z G(\mathcal{A})$

One-clock DTA: partitioning $\mathcal{C} \otimes Z G(\mathcal{A})$

- constants $c_{0}<\ldots<c_{m}$ in A yields $m+1$ subgraphs.
- subgraph i captures behaviour of \mathcal{C} and \mathcal{A} in $\left[c_{i}, c_{i+1}\right)$.
- any subgraph is a CTMC, resets lead to subgraph 0 , delays to $i+1$.
- a subgraph with its resets yields an "augmented" CTMC.

One-clock DTA: partitioning $\mathcal{C} \otimes Z G(\mathcal{A})$

(a) \mathcal{C}_{0}
(b) \mathcal{C}_{1}

(c) \mathcal{C}_{1}^{a}

(d) \mathcal{C}_{2}

One-clock DTA: characterizing $\operatorname{Pr}(\mathcal{C} \models \mathcal{A})$

Theorem

For CTMC \mathcal{C} with initial distribution $\iota_{\text {init }}$ and 1-clock DTA \mathcal{A} we have:

$$
\operatorname{Pr}(\mathcal{C} \models \mathcal{A})=\iota_{\text {init }} \cdot \mathbf{u}
$$

where \mathbf{u} is the solution of the linear equation system $\mathbf{x} \cdot \mathbf{M}=\mathbf{f}$, with

$$
\mathbf{M}=\left(\begin{array}{c|c}
\mathbf{I}_{n_{0}}-\mathbf{B}_{m-1} & \mathbf{A}_{m-1} \\
\hline \hat{\mathbf{P}}_{m}^{a} & \mathbf{I}_{n_{m}}-\mathbf{P}_{m}
\end{array}\right)
$$

and \mathbf{f} is the characterizing vector of the final states in subgraph m, and \mathbf{A} and \mathbf{B} are obtained from transient probabilities in all subgraphs.

One-clock DTA: characterizing $\operatorname{Pr}(\mathcal{C} \models \mathcal{A})$

Theorem

For CTMC \mathcal{C} with initial distribution $\iota_{\text {init }}$ and 1-clock DTA \mathcal{A} we have:

$$
\operatorname{Pr}(\mathcal{C} \models \mathcal{A})=\iota_{\mathrm{init}} \cdot \mathbf{u}
$$

where \mathbf{u} is the solution of the linear equation system $\mathbf{x} \cdot \mathbf{M}=\mathbf{f}$, with

$$
\mathbf{M}=\left(\begin{array}{c|c}
\mathbf{I}_{n_{0}}-\mathbf{B}_{m-1} & \mathbf{A}_{m-1} \\
\hline \hat{\mathbf{P}}_{m}^{a} & \mathbf{I}_{n_{m}}-\mathbf{P}_{m}
\end{array}\right)
$$

and \mathbf{f} is the characterizing vector of the final states in subgraph m, and \mathbf{A} and \mathbf{B} are obtained from transient probabilities in all subgraphs.

For single-clock DTA, reachability probabilities in (our) PDPs are characterized by the least solution of a linear equation system, whose coefficients are solutions of ODEs ($=$ transient probabilities in CTMCs).

Systems biology: immune-receptor signaling

[Goldstein et. al., Nat. Reviews Immunology, 2004]

Systems biology: immune-receptor signaling

- M ligands can react with a receptor R with rate k_{+1} yielding a ligand-receptor LR
- LR undergoes a sequence of N modifications with a constant rate k_{p} yielding B_{1}, \ldots, B_{N}
- LR B_{N} can link with an inactive messenger with rate k_{+x} yielding a ligand-receptor-messenger (LRM).
- The LRM decomposes into an active messenger with rate $k_{c a t}$

Verification results

	\#CTMC	No lumping		With lumping			
M	states	$\# \otimes$ states	time(s)	\#blocks	time(s)	\%transient	\%lumping
1	18	31	0	13	0	0%	0%
2	150	203	0.06	56	0.05	58%	39%
3	774	837	1.36	187	0.84	64%	30%
4	3024	2731	17.29	512	9.19	73%	24%
5	9756	7579	152.54	1213	73.4	76%	21%
6	27312	18643	1547.45	2579	457.35	78%	20%
7	68496	41743	11426.46	5038	3185.6	85%	14%
8	157299	86656	23356.5	9200	11950.8	81%	18%
9	336049	169024	71079.15	15906	38637.28	76%	22%
10	675817	312882	205552.36	26256	116314.41	71%	26%

In the case of no lumping, 99% of time is spent on transient analysis

Multi-multi-core model checking

N	4 Cores		20 Cores	
	time (s)	speedup	time(s)	speedup
3	0.45	3.03	0.42	3.22
4	5.3	3.26	3.44	5.02
5	44.73	3.41	15.87	9.61
6	620.16	2.50	160.58	9.64
7	4142.19	2.76	949.32	12.04
8	8168.62	2.86	1722.63	13.56
9	23865.17	2.98	5457.01	13.03
10	70623.46	2.91	16699.22	12.31

Parallelization of the transient analysis only; not the lumping.

Non-determinism: MDP

Non-determinism: MDP

An MDP is a DTMC in which in any state a non-deterministic choice between probability distributions exists.

Non-determinism: MDP

An MDP is a DTMC in which in any state a non-deterministic choice between probability distributions exists.

Set of enabled distributions ($=$ colors) in state s is $\operatorname{Act}(s)=\{\alpha, \beta\}$ where

- $\mathbf{P}(s, \alpha, s)=\frac{1}{2}, \mathbf{P}(s, \alpha, t)=0$ and $\mathbf{P}(s, \alpha, u)=\mathbf{P}(s, \alpha, v)=\frac{1}{4}$
- $\mathbf{P}(s, \beta, s)=\mathbf{P}(s, \beta, v)=0$, and $\mathbf{P}(s, \beta, t)=\mathbf{P}(s, \beta, u)=\frac{1}{2}$

Continuous-time Markov decision processes

A CTMDP is an MDP with an exit rate function $r: S \times A c t \rightarrow \mathbb{R}_{>0}$ where $r(s, \alpha)$ is the rate of an exponential distribution.

Continuous-time Markov decision processes

A CTMDP is an MDP with an exit rate function $r: S \times A c t \rightarrow \mathbb{R}_{>0}$ where $r(s, \alpha)$ is the rate of an exponential distribution. State residence times thus depend on the selected distribution.

$$
r(s, \alpha)=10 \text { and } r(s, \beta)=25
$$

Timed reachability objectives

Policy

Non-determinism is reduced by a policy.

Timed reachability objectives

Policy

Non-determinism is reduced by a policy. A policy \mathfrak{S} is a (measurable) function that takes a state and the elapsed time so far, and maps this onto a distribution (= color).

Timed reachability objectives

Policy

Non-determinism is reduced by a policy. A policy \mathfrak{S} is a (measurable) function that takes a state and the elapsed time so far, and maps this onto a distribution (= color).

Timed reachability

Let $G \subseteq S$ be a finite set of goal states and $t \in \mathbb{R}_{\geqslant 0}$ a deadline. Time-bounded reachability probability from state s under policy \mathfrak{S} :

$$
\operatorname{Pr}^{\mathscr{S}}\left(s \models \diamond^{\leqslant t} G\right)=P r_{s}^{\mathcal{S}}\left\{\pi \in \operatorname{Paths}(s) \mid \pi \models \diamond^{\leqslant t} G\right\}
$$

Timed reachability objectives

Policy

Non-determinism is reduced by a policy. A policy \mathfrak{S} is a (measurable) function that takes a state and the elapsed time so far, and maps this onto a distribution (= color).

Timed reachability

Let $G \subseteq S$ be a finite set of goal states and $t \in \mathbb{R}_{\geqslant 0}$ a deadline. Time-bounded reachability probability from state s under policy \mathfrak{S} :

Analysis focuses on obtaining lower- and upperbounds, e.g.,

$$
\operatorname{Pr}^{\max }\left(s \models \diamond^{\leqslant t} G\right)=\sup _{\mathfrak{S}} \operatorname{Pr}^{\mathfrak{S}}\left(s \models \diamond^{\leqslant t} G\right)
$$

where \mathfrak{S} ranges over all possible policies.

Maximal timed reachability

Characterisation of timed reachability probabilities

- Let function $x_{s}(t)=P r^{\max }\left(s \models \diamond^{\leqslant t} G\right)$ for any state s

Maximal timed reachability

Characterisation of timed reachability probabilities

- Let function $x_{s}(t)=P r^{\max }\left(s \models \Delta^{\leqslant t} G\right)$ for any state s
- if G is not reachable from s, then $x_{s}(t)=0$ for all t

Maximal timed reachability

Characterisation of timed reachability probabilities

- Let function $x_{s}(t)=P r^{\max }\left(s \models \Delta^{\leqslant t} G\right)$ for any state s
- if G is not reachable from s, then $x_{s}(t)=0$ for all t
- if $s \in G$ then $x_{s}(t)=1$ for all t

Maximal timed reachability

Characterisation of timed reachability probabilities

- Let function $x_{s}(t)=P r^{\max }\left(s \models \diamond^{\leqslant t} G\right)$ for any state s
- if G is not reachable from s, then $x_{s}(t)=0$ for all t
- if $s \in G$ then $x_{s}(t)=1$ for all t
- For any state $s \in \operatorname{Pre}^{*}(G) \backslash G$:

Maximal timed reachability

Characterisation of timed reachability probabilities

- Let function $x_{s}(t)=P r^{\max }\left(s \models \Delta^{\leqslant t} G\right)$ for any state s
- if G is not reachable from s, then $x_{s}(t)=0$ for all t
- if $s \in G$ then $x_{s}(t)=1$ for all t
- For any state $s \in \operatorname{Pre}^{*}(G) \backslash G$:

$$
x_{s}(t)=\max _{\alpha \in \operatorname{Act}(s)} \int_{0}^{t} \sum_{s^{\prime} \in S} \underbrace{x_{s^{\prime}}(t-x)}_{\begin{array}{c}
\begin{array}{c}
\text { probability to move to } \\
\text { state } s^{\prime} \text { at time } x \\
\text { under action } \alpha
\end{array}
\end{array} \underbrace{\mathbf{R}\left(s, \alpha, s^{\prime}\right) \cdot e^{-r(s, \alpha) \cdot x}}_{\begin{array}{c}
\text { max. prob. }
\end{array}} \cdot \underbrace{}_{\text {folfill } \diamond \leqslant t-x} G}
$$

Timed policies are optimal

Timed policies are optimal

Timed policies are optimal

- Timed policies are optimal; any time-abstract policy is inferior.

Timed policies are optimal

- Timed policies are optimal; any time-abstract policy is inferior.
- If long time remains: choose β; if short time remains: choose α.

Timed policies are optimal

- Timed policies are optimal; any time-abstract policy is inferior.
- If long time remains: choose β; if short time remains: choose α.
- Optimal policy for $t=1$: choose α if $1-t_{0} \leqslant \ln 3-\ln 2$, otherwise β

Discretisation

Continuous-time MDP \mathcal{C}

Exponential distributions

Reachability in d time

Discrete-time MDP \mathcal{C}_{τ}

Discrete probability distributions
Reachability in $\frac{d}{\tau}$ steps

Checking CTMDPs against DTA objectives

Problem statement:

Given model CTMDP \mathcal{C} and specification DTA \mathcal{A}, determine the maximal fraction of runs in \mathcal{C} that satisfying \mathcal{A} :

$$
\operatorname{Pr}^{\max }(\mathcal{C} \models \mathcal{A}):=\sup _{\mathfrak{S}} \operatorname{Pr}^{\mathfrak{S}}\{\text { Paths in } \mathcal{C} \text { accepted by } \mathcal{A}\}
$$

Checking CTMDPs against DTA objectives

Problem statement:

Given model CTMDP \mathcal{C} and specification DTA \mathcal{A}, determine the maximal fraction of runs in \mathcal{C} that satisfying \mathcal{A} :

$$
\operatorname{Pr}^{\max }(\mathcal{C} \models \mathcal{A}):=\sup _{\mathfrak{S}} \operatorname{Pr}^{\mathfrak{S}}\{\text { Paths in } \mathcal{C} \text { accepted by } \mathcal{A}\}
$$

Characterizing the maximal probability of $\models \mathcal{A}$

1. $\operatorname{Pr}^{\max }(\mathcal{C} \models \mathcal{A})$ equals the maximal probability of accepting paths in $\mathcal{C} \otimes \mathcal{A}$.

Checking CTMDPs against DTA objectives

Problem statement:

Given model CTMDP \mathcal{C} and specification DTA \mathcal{A}, determine the maximal fraction of runs in \mathcal{C} that satisfying \mathcal{A} :

$$
\operatorname{Pr}^{\max }(\mathcal{C} \models \mathcal{A}):=\sup _{\mathfrak{S}} \operatorname{Pr}^{\mathfrak{S}}\{\text { Paths in } \mathcal{C} \text { accepted by } \mathcal{A}\}
$$

Characterizing the maximal probability of $\quad=\mathcal{A}$

1. $\operatorname{Pr}^{\max }(\mathcal{C} \models \mathcal{A})$ equals the maximal probability of accepting paths in $\mathcal{C} \otimes \mathcal{A}$.
2. equals the maximal probability of accepting paths in $\mathcal{C} \otimes Z G(\mathcal{A})$.

One-clock DTA: characterizing $\operatorname{Pr}^{\max }(\mathcal{C} \models \mathcal{A})$

One-clock DTA: characterizing $\operatorname{Pr}^{\max }(\mathcal{C} \models \mathcal{A})$

Verifying a CTMC against a 1-clock DTA

$\operatorname{Pr}(\mathcal{C} \models \mathcal{A})$ can be characterised as the unique solution of a linear equation system whose coefficients are transient probabilities in CTMC \mathcal{C}.

One-clock DTA: characterizing $\operatorname{Pr}^{\max }(\mathcal{C} \models \mathcal{A})$

Verifying a CTMC against a 1-clock DTA

$\operatorname{Pr}(\mathcal{C} \models \mathcal{A})$ can be characterised as the unique solution of a linear equation system whose coefficients are transient probabilities in CTMC \mathcal{C}.

Verifying a CTMDP against a 1-clock DTA

$\operatorname{Pr}^{\max }(\mathcal{C} \vDash \mathcal{A})$ can be characterised as the unique solution of a linear inequation system whose coefficients are maximal timed reachability probabilities in CTMDP \mathcal{C}.

For details, please consult the paper in the RP'11 proceedings.

Related work

- Observers for timed automata
- Timed automata for GSMPs
- PTCTL model checking of PTA
- CSL with regular expressions
- CSL with one-clock DTA as time constraints
- for single-clock DTA, our results coincide
- ... but we obtain the results in a different manner
- Probabilistic semantics of TA

Timed Automata as Observers of Stochastic Processes

Epilogue

Epilogue

Take-home messages

- Timed reachability in a CTMC $\mathcal{C}=$ transient analysis of \mathcal{C}

Epilogue

Take-home messages

- Timed reachability in a CTMC $\mathcal{C}=$ transient analysis of \mathcal{C}
- DTA acceptance of a CTMC $\mathcal{C}=$ reachability probability in a PDP

Epilogue

Take-home messages

- Timed reachability in a CTMC $\mathcal{C}=$ transient analysis of \mathcal{C}
- DTA acceptance of a CTMC $\mathcal{C}=$ reachability probability in a PDP
- Efficient numerical algorithm for 1-clock DTA:
- using standard means: zone graph construction, graph analysis, transient analysis, linear equation systems.

Epilogue

Take-home messages

- Timed reachability in a CTMC $\mathcal{C}=$ transient analysis of \mathcal{C}
- DTA acceptance of a CTMC $\mathcal{C}=$ reachability probability in a PDP
- Efficient numerical algorithm for 1-clock DTA:
- using standard means: zone graph construction, graph analysis, transient analysis, linear equation systems.
- three orders of magnitude faster than alternative approaches.

Epilogue

Take-home messages

- Timed reachability in a CTMC $\mathcal{C}=$ transient analysis of \mathcal{C}
- DTA acceptance of a CTMC $\mathcal{C}=$ reachability probability in a PDP
- Efficient numerical algorithm for 1-clock DTA:
- using standard means: zone graph construction, graph analysis, transient analysis, linear equation systems.
- three orders of magnitude faster than alternative approaches.
- natural support for parallelisation and bisimulation minimisation.

Epilogue

Take-home messages

- Timed reachability in a CTMC $\mathcal{C}=$ transient analysis of \mathcal{C}
- DTA acceptance of a CTMC $\mathcal{C}=$ reachability probability in a PDP
- Efficient numerical algorithm for 1-clock DTA:
- using standard means: zone graph construction, graph analysis, transient analysis, linear equation systems.
- three orders of magnitude faster than alternative approaches.
- natural support for parallelisation and bisimulation minimisation.
- Discretization approach for multiple-clock DTA with error bounds.

Epilogue

Take-home messages

- Timed reachability in a CTMC $\mathcal{C}=$ transient analysis of \mathcal{C}
- DTA acceptance of a CTMC $\mathcal{C}=$ reachability probability in a PDP
- Efficient numerical algorithm for 1-clock DTA:
- using standard means: zone graph construction, graph analysis, transient analysis, linear equation systems.
- three orders of magnitude faster than alternative approaches.
- natural support for parallelisation and bisimulation minimisation.
- Discretization approach for multiple-clock DTA with error bounds.
- For CTMDPs: similar approach using linear inequations.

Epilogue

Take-home messages

- Timed reachability in a CTMC $\mathcal{C}=$ transient analysis of \mathcal{C}
- DTA acceptance of a CTMC $\mathcal{C}=$ reachability probability in a PDP
- Efficient numerical algorithm for 1-clock DTA:
- using standard means: zone graph construction, graph analysis, transient analysis, linear equation systems.
- three orders of magnitude faster than alternative approaches.
- natural support for parallelisation and bisimulation minimisation.
- Discretization approach for multiple-clock DTA with error bounds.
- For CTMDPs: similar approach using linear inequations.
- Prototypical tool-support for 1-clock DTA (to be in PRISM).

