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Timed Automata as Observers of Stochastic Processes

Let’s start easy

Discrete-time Markov chain
A DTMC D is a tuple (S,P, ιinit) with:

I S is a countable nonempty set of states

I P : S×S → [0, 1], transition probability function s.t.
∑

s′ P(s, s ′) = 1
I ιinit : S → [0, 1], the initial distribution with

∑
s∈S

ιinit(s) = 1

Initial states
I ιinit(s) is the probability that DTMC D starts in state s
I the set { s ∈ S | ιinit(s) > 0 } are the possible initial states.
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Timed Automata as Observers of Stochastic Processes

Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”.

Does this DTMC adequately model a fair
six-sided die?
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Timed Automata as Observers of Stochastic Processes

Some events of interest
(Simple) reachability

Eventually reach a state in G ⊆ S.

Formally:

♦G = {π ∈ Paths(D) | ∃i ∈ N. π[i ] ∈ G }

Invariance, i.e., always stay in state in G :

�G = {π ∈ Paths(D) | ∀i ∈ N. π[i ] ∈ G } = ♦G .

Constrained reachability
Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UG = {π ∈ Paths(D) | ∃i ∈ N. π[i ] ∈ G ∧ ∀j < i . π[j] 6∈ F }

In a similar way, �♦G and ♦�G are defined.
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Timed Automata as Observers of Stochastic Processes

Reachability probabilities in finite DTMCs
Problem statement
Let D be a DTMC with finite state space S, s ∈ S and G ⊆ S.

Aim: determine Pr(s |= ♦G) = Prs{π ∈ Paths(s) | π ∈ ♦G }.

Characterisation of reachability probabilities

I Let variable xs = Pr(s |= ♦G) for any state s
I if G is not reachable from s, then xs = 0
I if s ∈ G then xs = 1

I For any state s ∈ Pre∗(G) \ G :

xs =
∑

t∈S\G
P(s, t) · xt

︸ ︷︷ ︸
reach G via t ∈ S \ G

+
∑
u∈G

P(s, u)︸ ︷︷ ︸
reach G in one step
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Timed Automata as Observers of Stochastic Processes

Reachability probabilities: Knuth’s die

I Consider the event ♦4

I Using the previous characterisation we
obtain:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 = 1
2xs1 + 1

2xs2

xs2 = 1
2xs5 + 1

2xs6

xs5 = 1
2x5 + 1

2x4
xs6 = 1

2xs2 + 1
2x6

I Gaussian elimination yields:

xs5 = 1
2 , xs2 = 1

3 , xs6 = 1
6 , and xs0 = 1

6
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Timed Automata as Observers of Stochastic Processes

Linear equation system

Reachability probabilities as linear equation system

I Let S? = Pre∗(G) \ G , the states that can reach G by > 0 steps
I A =

(
P(s, t)

)
s,t∈S?

, the transition probabilities in S?

I b =
(
bs
)

s∈S?
, the probs to reach G in 1 step, i.e., bs =

∑
u∈G

P(s, u)

Then: x = (xs)s∈S?
with xs = Pr(s |= ♦G) is the unique solution of:

x = A·x + b or (I− A)·x = b

where I is the identity matrix of cardinality |S?| × |S?|.
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Timed Automata as Observers of Stochastic Processes

Repeated reachability and persistence
Long-run theorem

Almost surely any finite DTMC eventually reaches a BSCC and visits all
its states infinitely often.

Repeated reachability = Reachability
For finite DTMC with state space S, G ⊆ S, and s ∈ S:
Pr(s |= �♦G) = Pr(s |= ♦U)

where U is the union of all BSCCs T with T ∩ G 6= ∅.

Persistency = Reachability
For finite DTMC with state space S, G ⊆ S, and s ∈ S:
Pr(s |= ♦�G) = Pr(s |= ♦U)

where U is the union of all BSCCs T with T ⊆ G .
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Verifying ω-regular objectives = Reachability

Verifying DRA objectives theorem
Let D be a finite DTMC, s a state in D, A a DRA (deterministic Rabin
automaton) with acceptance set { (L1,K1), . . . , (Ln,Kn) }. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

where U is the union of all accepting BSCCs in D ⊗A. BSCC T ⊆ S × Q
is accepting if T ∩ (S × Li ) = ∅ and T ∩ (S × Ki ) 6= ∅ for some i .
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Synchronous product construction
DTMC D DRA A
with state space S with state space Q
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Synchronous product construction ⊗
DTMC D DRA A
with state space S with state space Q

product D ⊗A
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Verifying ω-regular objectives = Reachability

Verifying DRA objectives theorem
Let D be a finite DTMC, s a state in D, A a DRA (deterministic Rabin
automaton) with acceptance set { (L1,K1), . . . , (Ln,Kn) }. Then:

PrD(s |= A) = PrD⊗A
(
〈s, qs〉 |= ♦U

)
where qs = δ(q0, L(s)).

where U is the union of all accepting BSCCs in D ⊗A.

Thus the computation of probabilities for satisfying ω-regular properties boils
down to computing the reachability probabilities for certain BSCCs in D ⊗A.
A graph analysis and solving systems of linear equations suffice.
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Random timing
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Negative exponential distribution

Density of exponential distribution
The density of an exponentially distributed r.v. Y with rate λ ∈ R>0 is:

fY (x) = λ·e−λ·x for x > 0 and fY (x) = 0 otherwise

The cumulative distribution of r.v. Y with rate λ ∈ R>0 is:

FY (d) =

∫ d

0
λ·e−λ·x dx = [−e−λ·x ]d0 = 1− e−λ·d .

The rate λ ∈ R>0 uniquely determines an exponential distribution.

Variance and expectation
Let r.v. Y be exponentially distributed with rate λ ∈ R>0. Then:

Expectation E [Y ] = 1
λ and variance Var[Y ] = 1

λ2
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Exponential pdf and cdf

The higher λ, the faster the cdf approaches 1.
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Continuous-time Markov chains

A CTMC is a DTMC with an exit rate function r : S → R>0 where r(s) is
the rate of an exponential distribution.

r(s) = 25, r(t) = 4, r(u) = 2 and r(v) = 100
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Example: a classical perspective

A CTMC is a DTMC with an exit rate function r : S → R>0 where r(s) is the
rate of an exponential distribution.

A CTMC is a DTMC where transition probability function P is replaced by
a transition rate function R. We have R(s, s ′) = P(s, s ′)·r(s).

r(s) = 25, r(t) = 4, r(u) = 2 and r(v) = 100
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CTMC semantics

State-to-state timed transition probability
The probability to move from non-absorbing s to s ′ in [0, t] is:

R(s, s ′)
r(s)

·
(
1− e−r(s)·t

)
.

Residence time distribution
The probability to take some outgoing transition from s in [0, t] is:∫ t

0
r(s)·e−r(s)·x dx = 1− e−r(s)·t
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CTMCs are omnipresent!

I Markovian queueing networks (Kleinrock 1975)

I Stochastic Petri nets (Molloy 1977)

I Stochastic activity networks (Meyer & Sanders 1985)

I Stochastic process algebra (Herzog et al., Hillston 1993)

I Probabilistic input/output automata (Smolka et al. 1994)

I Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis
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Paths in a CTMC
Timed paths
Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

π = s0 t0−−→ s1 t1−−→ s2 · · ·

such that si ∈ S and ti ∈ R>0.

Time instant ti is the amount of time spent in state si .

Notations
I Let π[i ] := si denote the (i+1)-st state along the timed path π.
I Let π@t be the state occupied in π at time t ∈ R>0, i.e. π@t := π[i ]

where i is the smallest index such that
∑i

j=0 tj > t.
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Zeno theorem

Zeno path
Path s0 t0−−→ s1 t1−−→ s2 t2−−→ s3 . . . . . . is called Zeno 1 if

∑
i ti converges.

Example

s0 1−→ s1
1
2−−→ s2

1
4−−→ s3 . . . si

1
2i−−→ si+1 . . .

In timed automata, such executions are typically excluded from the
analysis.

Zeno theorem
For all states s in any CTMC, Pr{π ∈ Paths(s) | π is Zeno } = 0.

1Zeno of Elea (490–430 BC), philosopher, famed for his paradoxes.
Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 21/50



logoRWTH

Timed Automata as Observers of Stochastic Processes

Zeno theorem

Zeno path
Path s0 t0−−→ s1 t1−−→ s2 t2−−→ s3 . . . . . . is called Zeno 1 if

∑
i ti converges.

Example

s0 1−→ s1
1
2−−→ s2

1
4−−→ s3 . . . si

1
2i−−→ si+1 . . .

In timed automata, such executions are typically excluded from the
analysis.

Zeno theorem
For all states s in any CTMC, Pr{π ∈ Paths(s) | π is Zeno } = 0.

1Zeno of Elea (490–430 BC), philosopher, famed for his paradoxes.
Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 21/50



logoRWTH

Timed Automata as Observers of Stochastic Processes

Zeno theorem

Zeno path
Path s0 t0−−→ s1 t1−−→ s2 t2−−→ s3 . . . . . . is called Zeno 1 if

∑
i ti converges.

Example

s0 1−→ s1
1
2−−→ s2

1
4−−→ s3 . . . si

1
2i−−→ si+1 . . .

In timed automata, such executions are typically excluded from the
analysis.

Zeno theorem
For all states s in any CTMC, Pr{π ∈ Paths(s) | π is Zeno } = 0.

1Zeno of Elea (490–430 BC), philosopher, famed for his paradoxes.
Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 21/50



logoRWTH

Timed Automata as Observers of Stochastic Processes

Zeno theorem

Zeno path
Path s0 t0−−→ s1 t1−−→ s2 t2−−→ s3 . . . . . . is called Zeno 1 if

∑
i ti converges.

Example

s0 1−→ s1
1
2−−→ s2

1
4−−→ s3 . . . si

1
2i−−→ si+1 . . .

In timed automata, such executions are typically excluded from the
analysis.

Zeno theorem
For all states s in any CTMC, Pr{π ∈ Paths(s) | π is Zeno } = 0.

1Zeno of Elea (490–430 BC), philosopher, famed for his paradoxes.
Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 21/50



logoRWTH

Timed Automata as Observers of Stochastic Processes

Timed reachability events

Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G ⊆ S in the interval I. Formally:

♦I G = {π ∈ Paths(C) | ∃t ∈ I. π@t ∈ G }

Invariance, i.e., always stay in state in G in the interval I:

�I G = {π ∈ Paths(C) | ∀t ∈ I. π@t ∈ G } = ♦I G .

Constrained timed reachability
Or “reach-avoid” properties where states in F ⊆ S are forbidden:

F UI G = {π ∈ Paths(C) | ∃t ∈ I. π@t ∈ G ∧ ∀d < t. π@d 6∈ F }
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Timed Automata as Observers of Stochastic Processes

Measurability

Measurability theorem
Events ♦I G , �I G , and F UI G are measurable on any CTMC.
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Timed Automata as Observers of Stochastic Processes

Timed reachability probabilities in finite CTMCs
Problem statement
Let C be a CTMC with finite state space S, s ∈ S, t ∈ R>0 and G ⊆ S.

Aim: Pr(s |= ♦6t G) = Prs{π ∈ Paths(s) | π |= ♦6t G }

where Prs is the probability measure in CTMC C with single initial state s.

Characterisation of timed reachability probabilities

I Let function xs(t) = Pr(s |= ♦6t G) for any state s
I if G is not reachable from s, then xs(t) = 0 for all t
I if s ∈ G then xs(t) = 1 for all t

I For any state s ∈ Pre∗(G) \ G :

xs(t) =

∫ t

0

∑
s′∈S

R(s, s ′) · e−r(s)·x︸ ︷︷ ︸
probability to move to

state s ′ at time x

· xs′(t−x)︸ ︷︷ ︸
prob. to fulfill
♦6t−x G from s ′

dx
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Timed Automata as Observers of Stochastic Processes

Reachability

Reachability probabilities in finite DTMCs and CTMCs
Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs
Solve a system of Volterra integral equations. This is in general non-trivial,
inefficient, and has several pitfalls such as numerical stability.

Solution
Reduce the problem of computing Pr(s |= ♦6t G) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities.

Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 25/50



logoRWTH

Timed Automata as Observers of Stochastic Processes

Reachability

Reachability probabilities in finite DTMCs and CTMCs
Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs
Solve a system of Volterra integral equations. This is in general non-trivial,
inefficient, and has several pitfalls such as numerical stability.

Solution
Reduce the problem of computing Pr(s |= ♦6t G) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities.

Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 25/50



logoRWTH

Timed Automata as Observers of Stochastic Processes

Reachability

Reachability probabilities in finite DTMCs and CTMCs
Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs
Solve a system of Volterra integral equations.

This is in general non-trivial,
inefficient, and has several pitfalls such as numerical stability.

Solution
Reduce the problem of computing Pr(s |= ♦6t G) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities.

Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 25/50



logoRWTH

Timed Automata as Observers of Stochastic Processes

Reachability

Reachability probabilities in finite DTMCs and CTMCs
Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs
Solve a system of Volterra integral equations. This is in general non-trivial,
inefficient, and has several pitfalls such as numerical stability.

Solution
Reduce the problem of computing Pr(s |= ♦6t G) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities.

Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 25/50



logoRWTH

Timed Automata as Observers of Stochastic Processes

Reachability

Reachability probabilities in finite DTMCs and CTMCs
Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs
Solve a system of Volterra integral equations. This is in general non-trivial,
inefficient, and has several pitfalls such as numerical stability.

Solution
Reduce the problem of computing Pr(s |= ♦6t G) to an alternative
problem for which well-known efficient techniques exist:

computing
transient probabilities.

Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 25/50



logoRWTH

Timed Automata as Observers of Stochastic Processes

Reachability

Reachability probabilities in finite DTMCs and CTMCs
Solve a system of linear equations (using some efficient techniques).

Timed reachability probabilities in finite CTMCs
Solve a system of Volterra integral equations. This is in general non-trivial,
inefficient, and has several pitfalls such as numerical stability.

Solution
Reduce the problem of computing Pr(s |= ♦6t G) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities.

Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 25/50



logoRWTH

Timed Automata as Observers of Stochastic Processes

Timed reachability probabilities = transient probabilities

Aim

Compute Pr(s |= ♦6tG) in CTMC C. Observe that once a path π reaches
G within t time, then the remaining behaviour along π is not important.
This suggests to make all states in G absorbing.

Let CTMC C = (S,P, r , ιinit) and G ⊆ S. The CTMC C[G ] = (S,PG ,
r , ιinit) with PG(s, t) = P(s, t) if s /∈ G and PG(s, s) = 1 if s ∈ G .
All outgoing transitions of s ∈ G are replaced by a single self-loop at s.

Lemma
Pr(s |= ♦6tG)︸ ︷︷ ︸

timed reachability in C

= Pr(s |= ♦=tG)︸ ︷︷ ︸
timed reachability in C[G ]

= p(t) with p(0) = 1s︸ ︷︷ ︸
transient prob. in C[G ]

.
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Aim
Compute Pr(s |= ♦6tG) in CTMC C. Observe that once a path π reaches
G within t time, then the remaining behaviour along π is not important.
This suggests to make all states in G absorbing.

Let CTMC C = (S,P, r , ιinit) and G ⊆ S. The CTMC C[G ] = (S,PG ,
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Timed Automata as Observers of Stochastic Processes

Transient distribution theorem

Theorem: transient distribution as ordinary differential equation
The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

p′(t) = p(t) · (R− r) given p(0)

where r is the diagonal matrix of vector r .

Solution technique:
Transform the CTMC (again), and then truncate a Taylor-MacLaurin
expansion. This yields a polynomial-time approximation algorithm.
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Timed Automata as Observers of Stochastic Processes

Robot navigation
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Robot navigation

I The robot randomly moves through the cells, and resides in a cell for
an exponentially distributed amount of time.

I Gray cells are dangerous; the robot should leave them quickly.
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Timed Automata as Observers of Stochastic Processes

Robot navigation

I The robot randomly moves through the cells, and resides in a cell for
an exponentially distributed amount of time.

I Gray cells are dangerous; the robot should leave them quickly.

Property:
What is the probability to reach B from A within 10 time units while
residing in any dangerous zone for at most 2 time units?
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Timed Automata as Observers of Stochastic Processes

Robot navigation: property
Property:
What is the probability to reach B from A within 10 time units while
residing in any dangerous zone for at most 2 time units?
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Timed Automata as Observers of Stochastic Processes

Deterministic timed automata

A Deterministic Timed Automaton (DTA) A is a tuple (Σ,X ,Q, q0,F ,→):

I Σ - alphabet
I X - finite set of clocks
I Q - finite set of locations
I q0 ∈ Q - initial location
I F ⊆ Q - accept locations
I → ∈ Q×Σ×C(X )×2X×Q

- transition relation;

Determinism: q a,g ,X−−−−→ q′ and q a,g ′,X ′−−−−−→ q′′ implies g ∩ g ′ = ∅
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Timed Automata as Observers of Stochastic Processes

What are we interested in?

Problem statement:
Given model CTMC C and specification DTA A, determine the fraction of
runs in C that satisfy A:

Pr(C |= A) := PrC
{
Paths in C accepted by A

}
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Timed Automata as Observers of Stochastic Processes

Theoretical facts

Well-definedness
For any CTMC C and DTA A, the set

{
Paths in C accepted by A

}
is

measurable.
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Pr(C |= A) equals the probability of accepting paths in C ⊗ A.
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Theoretical facts

Well-definedness
For any CTMC C and DTA A, the set

{
Paths in C accepted by A

}
is

measurable.

Characterizing the probability of C |= A

Pr(C |= A) equals the probability of accepting paths in C ⊗ A.

Zone graph construction

1. Reachability probabilities in C ⊗ A and ZG(C ⊗ A) coincide
2. ZG(C ⊗ A) and C ⊗ ZG(A) are isomorphic
3. C ⊗ ZG(A) is a piecewise-deterministic Markov process [Davis, 1993]
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Timed Automata as Observers of Stochastic Processes

Theoretical facts

Well-definedness
For any CTMC C and DTA A, the set

{
Paths in C accepted by A

}
is

measurable.

Characterizing the probability of C |= A under finite acceptance

Pr(C |= A) equals the probability of accepting paths in C ⊗ ZG(A).

Characterizing the probability of C |= A under Muller acceptance

Pr(C |= A) equals the probability of accepting BSCCs in C ⊗ ZG(A).
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Timed Automata as Observers of Stochastic Processes

Product construction: example

An example CTMC C (left) and DTA A (right)
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Timed Automata as Observers of Stochastic Processes

Product construction: example

An example CTMC C (left up) and DTA A (right up) and C ⊗ ZG(A) (below)
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Timed Automata as Observers of Stochastic Processes

One-clock DTA: partitioning C ⊗ ZG(A)
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Timed Automata as Observers of Stochastic Processes

One-clock DTA: partitioning C ⊗ ZG(A)

I constants c0 < . . . < cm in A yields m+1 subgraphs.
I subgraph i captures behaviour of C and A in [ci , ci+1).
I any subgraph is a CTMC, resets lead to subgraph 0, delays to i+1.
I a subgraph with its resets yields an “augmented” CTMC.
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One-clock DTA: partitioning C ⊗ ZG(A)

Joost-Pieter Katoen Observing Stochastic Processes by Timed Automata 35/50



logoRWTH

Timed Automata as Observers of Stochastic Processes

One-clock DTA: characterizing Pr(C |= A)

Theorem
For CTMC C with initial distribution ιinit and 1-clock DTA A we have:

Pr(C |= A) = ιinit · u

where u is the solution of the linear equation system x ·M = f, with

M =

(
In0 − Bm−1 Am−1

P̂a
m Inm − Pm

)

and f is the characterizing vector of the final states in subgraph m, and A and B
are obtained from transient probabilities in all subgraphs.

For single-clock DTA, reachability probabilities in (our) PDPs are characterized by
the least solution of a linear equation system, whose coefficients are solutions of
ODEs (= transient probabilities in CTMCs).
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Timed Automata as Observers of Stochastic Processes

Systems biology: immune-receptor signaling

[Goldstein et. al., Nat. Reviews Immunology, 2004]
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Timed Automata as Observers of Stochastic Processes

Systems biology: immune-receptor signaling

I M ligands can react with a receptor R with rate k+1 yielding a
ligand-receptor LR

I LR undergoes a sequence of N modifications with a constant rate kp
yielding B1, . . . ,BN

I LR BN can link with an inactive messenger with rate k+x yielding a
ligand-receptor-messenger (LRM).

I The LRM decomposes into an active messenger with rate kcat
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Timed Automata as Observers of Stochastic Processes

Verification results

#CTMC No lumping With lumping
M states # ⊗ states time(s) #blocks time(s) %transient %lumping
1 18 31 0 13 0 0% 0%
2 150 203 0.06 56 0.05 58% 39%
3 774 837 1.36 187 0.84 64% 30%
4 3024 2731 17.29 512 9.19 73% 24%
5 9756 7579 152.54 1213 73.4 76% 21%
6 27312 18643 1547.45 2579 457.35 78% 20%
7 68496 41743 11426.46 5038 3185.6 85% 14%
8 157299 86656 23356.5 9200 11950.8 81% 18%
9 336049 169024 71079.15 15906 38637.28 76% 22%
10 675817 312882 205552.36 26256 116314.41 71% 26%

In the case of no lumping, 99% of time is spent on transient analysis
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Timed Automata as Observers of Stochastic Processes

Multi-multi-core model checking

4 Cores 20 Cores
N time(s) speedup time(s) speedup
3 0.45 3.03 0.42 3.22
4 5.3 3.26 3.44 5.02
5 44.73 3.41 15.87 9.61
6 620.16 2.50 160.58 9.64
7 4142.19 2.76 949.32 12.04
8 8168.62 2.86 1722.63 13.56
9 23865.17 2.98 5457.01 13.03
10 70623.46 2.91 16699.22 12.31

Parallelization of the transient analysis only; not the lumping.
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Timed Automata as Observers of Stochastic Processes

Non-determinism: MDP

An MDP is a DTMC in which in any state a non-deterministic choice
between probability distributions exists.

Set of enabled distributions (= colors) in state s is Act(s) = {α,β } where
I P(s,α, s) = 1

2 , P(s,α, t) = 0 and P(s,α, u) = P(s,α, v) = 1
4

I P(s,β, s) = P(s,β, v) = 0, and P(s,β, t) = P(s,β, u) = 1
2
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Timed Automata as Observers of Stochastic Processes

Continuous-time Markov decision processes

A CTMDP is an MDP with an exit rate function r : S × Act→ R>0 where
r(s,α) is the rate of an exponential distribution.

State residence times
thus depend on the selected distribution.

r(s,α) = 10 and r(s,β) = 25
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Timed Automata as Observers of Stochastic Processes

Continuous-time Markov decision processes

A CTMDP is an MDP with an exit rate function r : S × Act→ R>0 where
r(s,α) is the rate of an exponential distribution. State residence times
thus depend on the selected distribution.

r(s,α) = 10 and r(s,β) = 25
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Timed Automata as Observers of Stochastic Processes

Timed reachability objectives
Policy
Non-determinism is reduced by a policy.

A policy S is a (measurable)
function that takes a state and the elapsed time so far, and maps this onto
a distribution (= color).

Timed reachability
Let G ⊆ S be a finite set of goal states and t ∈ R>0 a deadline.
Time-bounded reachability probability from state s under policy S:

PrS(s |= ♦6tG) = PrCSs {π ∈ Paths(s) | π |= ♦6tG }

Analysis focuses on obtaining lower- and upperbounds, e.g.,

Prmax(s |= ♦6tG) = supS PrS(s |= ♦6tG)

where S ranges over all possible policies.
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Timed Automata as Observers of Stochastic Processes

Maximal timed reachability

Characterisation of timed reachability probabilities

I Let function xs(t) = Prmax(s |= ♦6t G) for any state s

I if G is not reachable from s, then xs(t) = 0 for all t
I if s ∈ G then xs(t) = 1 for all t

I For any state s ∈ Pre∗(G) \ G :

xs(t) = max
α∈Act(s)

∫ t

0

∑
s′∈S

R(s,α, s ′) · e−r(s,α)·x︸ ︷︷ ︸
probability to move to

state s ′ at time x
under action α

· xs′(t−x)︸ ︷︷ ︸
max. prob.

to fulfill ♦6t−x G
from s ′

dx
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Timed Automata as Observers of Stochastic Processes

Timed policies are optimal

I Timed policies are optimal; any time-abstract policy is inferior.
I If long time remains: choose β; if short time remains: choose α.
I Optimal policy for t=1: choose α if 1−t0 6 ln 3− ln 2, otherwise β
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Discretisation

Reachability in d time ≈ Reachability in d
τ steps
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Checking CTMDPs against DTA objectives

Problem statement:
Given model CTMDP C and specification DTA A, determine the maximal
fraction of runs in C that satisfying A:

Prmax(C |= A) := supS PrS
{
Paths in C accepted by A

}

Characterizing the maximal probability of C |= A

1. Prmax(C |= A) equals the maximal probability of accepting paths in C ⊗ A.
2. . . . . . . equals the maximal probability of accepting paths in C ⊗ ZG(A).
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One-clock DTA: characterizing Prmax(C |= A)

Verifying a CTMC against a 1-clock DTA
Pr(C |= A) can be characterised as the unique solution of a linear equation
system whose coefficients are transient probabilities in CTMC C.

Verifying a CTMDP against a 1-clock DTA
Prmax(C |= A) can be characterised as the unique solution of a linear
inequation system whose coefficients are maximal timed reachability
probabilities in CTMDP C.

For details, please consult the paper in the RP’11 proceedings.
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Related work

I Observers for timed automata (Aceto et al. JLAP 2003)

I Timed automata for GSMPs (Brazdil et al. HSCC 2011)

I PTCTL model checking of PTA (Kwiatkowska et el. TCS 2002)

I CSL with regular expressions (Baier et al. IEEE TSE 2007)

I CSL with one-clock DTA as time constraints (Donatelli et al. IEEE TSE 2009)

I for single-clock DTA, our results coincide
I . . . but we obtain the results in a different manner

I Probabilistic semantics of TA (Baier et al. LICS 2008)
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Epilogue

Take-home messages

I Timed reachability in a CTMC C = transient analysis of C
I DTA acceptance of a CTMC C = reachability probability in a PDP
I Efficient numerical algorithm for 1-clock DTA:

I using standard means: zone graph construction, graph analysis,
transient analysis, linear equation systems.

I three orders of magnitude faster than alternative approaches.
I natural support for parallelisation and bisimulation minimisation.

I Discretization approach for multiple-clock DTA with error bounds.
I For CTMDPs: similar approach using linear inequations.
I Prototypical tool-support for 1-clock DTA (to be in PRISM).
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