Parametric Verification and Test Coverage for Hybrid Automata Using the Inverse Method

Laurent Fribourg¹ Ulrich Kühne²

¹LSV ENS de Cachan, CNRS

²University of Bremen

2011/10/28

A hybrid system

3 Applications

3 Applications

Hybrid Automata

Hybrid Automaton

$$\mathcal{A} = (\Sigma, Q, q_0, I, D, \rightarrow)$$
 over a set of variables X, where

- actions Σ
- locations Q with initial location $q_0 \in Q$
- invariant I_q for each location q
- activity $D_q: \mathbb{R}^n o \mathbb{R}^n$ for each location q

• discrete transitions $q \xrightarrow{g,a,\mu} q'$

Restriction: I_q, g, μ (and D_q) are linear convex constraints

Hybrid Automata

Concrete state

In a LHA, a concrete state is a pair (q, w) with a location q and a valuation w of the variables and parameters

Symbolic state

In a LHA, a symbolic state is a pair (q, C) with a location q and a constraint C on the variables and parameters

Hybrid Automata

Parameterized Hybrid Automata

Parameters

Given a HA \mathcal{A} with variables X, we introduce *parameters* P with $P \cap X = \emptyset$. Given a constraint on the parameters K, in a parameterized HA $\mathcal{A}(K)$, *invariants*, *guards* and *jump predicates* can depend on parameters, but *not* the activities.

In the modeling and verification of hybrid systems, parameters can be used to model

- Unknown inputs
- Environment constraints
- System parameters to optimize

Valuation / instantiation

A parameter valuation is a function $\pi : P \to \mathbb{R}$. A complete valuation π turns a parameterized HA $\mathcal{A}(\mathcal{K})$ into a HA $\mathcal{A}[\pi]$.

Example – water tank

Example – water tank

 How to choose min, max, m, M and delay, such that always min < w < max?

Parametric verification and test coverage

Given HA $\mathcal{A}(\mathcal{K})$ with reachable states $Reach_{\mathcal{A}(\mathcal{K})}$ and a set of bad locations \mathcal{B} , consider the simple reachability (safety) property:

 $\mathcal{S}_{\mathcal{B}}$: The reachable locations of $\mathcal{A}(\mathcal{K})$ and \mathcal{B} are disjunct

Parameter synthesis

Given $\mathcal B_{\text{r}}$ compute all parameter valuations such that $\mathcal S_{\mathcal B}$ holds

Inverse problem

Given \mathcal{B} and a valuation π_o such that $\mathcal{S}_{\mathcal{B}}$ holds for $\mathcal{A}[\pi_0]$, compute a constraint \mathcal{K}_0 with $\pi_0 \models \mathcal{K}_0$, such that for all valuations $\pi \models \mathcal{K}_0$, $\mathcal{A}[\pi]$ has the same set of traces

Test coverage

Given $\mathcal{A}(\mathcal{K})$, compute a (minimal) set of valuations V covering all admissible traces of $\mathcal{A}(\mathcal{K})$, such that for all $\pi_1, \pi_2 \in V$, the traces of $\mathcal{A}[\pi_1]$ and $\mathcal{A}[\pi_2]$ are distinct

Related Work

- Parameter synthesis
 - Reachability and projection (Henzinger and Wong-Toi 1996)
 - CEGAR-based approach for LHA (Frehse et al. 2008)
- Inverse problem
 - Inverse Method for TA (André et al. 2009)
 - Behavioral Cartography for TA (André and Fribourg 2010)
- Test coverage
 - Robust test generation for hybrid systems (Julius et al. 2007)
 - Backward trace analysis for Simulink models (Alur et al. 2008)

⇒ Here: adapt Inverse Method for HA

3 Applications

The Inverse Method

Inverse Method

- A state (q, C) is π_0 -incompatible, if $\pi_0 \not\models C$
- During reachability, remove consecutively all π_0 -incompatible states
- Accumulate negated incompatible terms in a constraint K_0

Behavioral Cartography

- Given a rectangular region V_0 of the parameter space, step sizes δ_i
- Repeat the Inverse method until all grid points are covered

Reachability of LHA

Forward-reachable states of a symbolic state s = (q, C)

- Operations on symbolic states \triangleq *convex* polyhedra
- Compute the *time elapse* $s \uparrow_q$ wrt. activity D_q
- Compute the discrete successor wrt. transition $q \stackrel{g,a,\mu}{\to} q'$

The Inverse Method for LHA

Observation

- Convexity is preserved during reachability
- Monotonicity holds: $(q, C) \stackrel{*}{\Rightarrow} (q', C') \Rightarrow C' \downarrow_P \subseteq C \downarrow_P$
- Inverse Method can be adapted straight forward for LHA
- But poor results for approximated affine systems

The Inverse Method for LHA

Application to a linearized affine system:

- Partitioning necessary to verify safety
- Fine grained partitioning leads to complex traces
- Small changes in parameters lead to different traces
- Constraints generated by IM are very small

Extended algorithm for affine dynamics

• Idea: Join states from neighboring partitions of the same location

Enhanced reachability algorithm for affine HA

- Build local partitions P of the invariant I_q
- **②** Compute a linear over-approximation \hat{D}_P of D_q for each partition P
- Compute the locally reachable states S wrt. partitions P and dynamics D_P
- Compute the convex hull of the states S

Extended algorithm for affine dynamics

- Advantages
 - Leads to less computed states
 - Produces simpler trace sets
 - IM can compute larger constraints
 - Can be as precise as fine grained linearization
- Disadvantages
 - Computational overhead for convex hull operation
 - Loss of precision by convex hull
- Implemented in IMITATOR 3 (also known as HyMITATOR)
- Alpha version available at www.lsv.ens-cachan.fr/Software/imitator

Example – water tank

Water tank – Inverse Method

Safety for the water tank

S: The bad state $B = \{error\}$ is not reachable

- Choose sufficient margins |max M| and |m min| and a short *delay*
- $\pi_0 = (\min \mapsto 0, m \mapsto 10, M \mapsto 20, \max \mapsto 30, delay \mapsto 1)$ works fine
- Can we do better?

Inverse Method

 $IM(\pi_0): M + delay \ge m \land m \ge min + 2 \cdot delay \land max \ge M + delay$ guarantees the same trace set as π_0

• Are there other good behaviors?

Water tank – Behavioral Cartography

Exploring the *m*, *M*-plane with *min*, *max* and *delay* fixed as in π_0

Application – room heating benchmark

- Hybrid system benchmark (Fehnker and Ivancic 2004)
- Two movable heaters in three adjacent rooms
- Temperature flow between rooms $(a_{i,j})$ and to the outside (b_i)
- Move heaters at difference (dif) and threshold (get) temperature
- Keep all rooms within temperature range [min, max]

Room heating benchmark - automaton

Room heating benchmark - overview

- Complex affine dynamics
- Eliminated some non-determinism using time discretization
- Parameters
 - Sample time *h* (fixed for experiments)
 - Initial temperatures a₁, a₂, a₃

Bounded liveness

At least one of the heaters will be moved within a given time interval $[0, t_{max}]$ with $t_{max} = \frac{1}{2}$ [hour] and a sample time of h = 6 [minutes]

Room heating benchmark - Inverse Method

Room heating benchmark - test coverage

 a) Statically linearized LHA, about 55% coverage

b) With enhanced algorithm, coarse linearization

3 Applications

Conclusions

- Adaptation of the Inverse Method for hybrid automata
- Extended algorithm for affine systems
- Application to parameter optimization
- Behavioral Cartography for test coverage
- Good results for LHA
- Mixed results for affine systems
 - High (and volatile) runtimes
 - Reachability for affine automata needs luck and artistry

References I

Alur, R., Kanade, A., Ramesh, S., & Shashidhar, K. (2008).
 Symbolic analysis for improving simulation coverage of simulink/stateflow models.
 In: *EMSOFT*, pages 89–98.

André, E., Chatain, T., Encrenaz, E., & Fribourg, L. (2009). An inverse method for parametric timed automata. *IJFCS*, 20(5):819–836.

André, E. & Fribourg, L. (2010).
 Behavioral cartography of timed automata.
 In: *RP*, volume 6227 of *LNCS*, pages 76–90. Springer.

Fehnker, A. & Ivancic, F. (2004). Benchmarks for hybrid systems verification. In: HSCC, pages 326–341. Springer.

References II

Frehse, G., Jha, S., & Krogh, B. (2008).

A counterexample-guided approach to parameter synthesis for linear hybrid automata.

In: HSCC, volume 4981 of LNCS.

Halbwachs, N., Proy, Y.-E., & Roumanoff, P. (1997).
Verification of real-time systems using linear relation analysis.
In: Formal Methods In System Design, pages 157–185.

Henzinger, T. & Wong-Toi, H. (1996).
Using HyTech to synthesize control parameters for a steam boiler.
In: Formal Methods for Industrial Applications, Specifying and Programming the Steam Boiler Control, pages 265–282. Springer.

Julius, A., Fainekos, G., Anand, M., Lee, I., & Pappas, G. (2007).
 Robust test generation and coverage for hybrid systems.
 In: *HSCC*, volume 4416 of *LNCS*.