Reachability and deadlocking in multi-stage scheduling

Christian Eggermont Gerhard Woeginger

Eindhoven University of Technology

Wednesday September 28, 2011 RP 2011

Basic Terms Related Worł

Scheduling systems

Basic Terms Related Worł

Scheduling systems

Eggermont, Woeginger Reachability and deadlocking in multi-stage scheduling

Basic Terms Related Worł

Scheduling systems

э

- 4 同 🕨 - 4 目 🕨 - 4 目

Basic Terms Related Worł

Scheduling systems

Basic Terms Related Work

Scheduling systems

Basic Terms Related Worł

Scheduling systems

Eggermont, Woeginger Reachability and deadlocking in multi-stage scheduling

Basic Terms Related Worł

Scheduling systems

э

Basic Terms Related Worł

Scheduling systems

Eggermont, Woeginger Reachability and deadlocking in multi-stage scheduling

э

Basic Terms Related Worł

Scheduling systems

Eggermont, Woeginger Reachability and deadlocking in multi-stage scheduling

э

-

A (1) > A (2) > A

Basic Terms Related Work

Scheduling systems

Eggermont, Woeginger Reachability and deadlocking in multi-stage scheduling

Image: A image: A

э

Basic Terms Related Worł

Scheduling systems

▲ 同 ▶ → 三 ▶

э

Basic Terms Related Work

Basic Terms

blocking set;

- (sub-)set of machines $\mathcal{B} \neq \emptyset$ occupied to full capacity,
- \bullet jobs on ${\cal B}$ need further processing, next only within ${\cal B}$

A

▲ 同 ▶ → 三 ▶

Basic Terms Related Work

Basic Terms

- blocking set;
 - (sub-)set of machines $\mathcal{B} \neq \emptyset$ occupied to full capacity,
 - \bullet jobs on ${\cal B}$ need further processing, next only within ${\cal B}$
- deadlock; a system state with
 - not all jobs completed
 - no job can move

Basic Terms

blocking set;

- (sub-)set of machines $\mathcal{B} \neq \emptyset$ occupied to full capacity,
- \bullet jobs on ${\cal B}$ need further processing, next only within ${\cal B}$
- deadlock; a system state with
 - not all jobs completed
 - no job can move
- unsafe state; a system state where deadlock is unavoidable

・ 同 ト ・ ヨ ト ・ ヨ

Basic Terms

- blocking set;
 - (sub-)set of machines $\mathcal{B} \neq \emptyset$ occupied to full capacity,
 - \bullet jobs on ${\cal B}$ need further processing, next only within ${\cal B}$
- deadlock; a system state with
 - not all jobs completed
 - no job can move
- unsafe state; a system state where deadlock is unavoidable

Lemma

state contains blocking set \implies state unsafe

(人間) ト く ヨ ト く ヨ ト

Basic Terms

blocking set;

- (sub-)set of machines $\mathcal{B} \neq \emptyset$ occupied to full capacity,
- \bullet jobs on ${\cal B}$ need further processing, next only within ${\cal B}$
- deadlock; a system state with
 - not all jobs completed
 - no job can move
- unsafe state; a system state where deadlock is unavoidable
- scheduling system restricted to family of digraphs *F*; each job is isomorphic to digraph in *F*.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Basic Terms Related Work

Previous Related Work

- M. LAWLEY AND S. REVELIOTIS (2001). Deadlock avoidance for sequential resource allocation systems: hard and easy cases. *The International Journal of Flexible Manufacturing Systems* 13, 385–404.
- W. SULISTYONO AND M. LAWLEY (2001). Deadlock avoidance for manufacturing systems with partially ordered process plans. *IEEE Transactions on Robotics and Automation 17*, 819–832.
- C.E.J. EGGERMONT, A. SCHRIJVER, G.J. WOEGINGER (2011). Analysis of multi-stage open shop processing systems. *International Symposium on Theoretical Aspects of Computer Science* (STACS), LIPIcs 9, 484–494.

- 4 周 ト 4 戸 ト 4 戸 ト

Problems Results

Problems

イロト イポト イヨト イヨ

Problems Results

Problems

1 Recognize Safe State

Instance : scheduling system, state *s* Question : Is state *s* safe?

-

Problems Results

Problems

1 Recognize Safe State

Instance : scheduling system, state *s* Question : Is state *s* safe?

2 REACHABILITY

Instance : scheduling system, state *s* Question : Can the system reach state *s*?

4 3 b

Problems Results

Problems

1 Recognize Safe State

Instance : scheduling system, state *s* Question : Is state *s* safe?

2 REACHABILITY

Instance : scheduling system, state *s* Question : Can the system reach state *s*?

3 Deadlock

Instance : scheduling system Question : Can the system fall into a deadlock state?

4 3 b

Problems Results

Problems

How does restricting scheduling system affect complexity?

RECOGNIZE SAFE STATE
Instance : scheduling system, state s
Question : Is state s safe?

2 REACHABILITY

Instance : scheduling system, state *s* Question : Can the system reach state *s*?

O DEADLOCK

Instance : scheduling system Question : Can the system fall into a deadlock state?

伺 ト イヨト イヨ

Problems Results

Results

<ロ> <同> <同> < 同> < 同>

Problems Results

Results: 1. Safety

Recognize Safe State

Instance : scheduling system, state *s* Question : Is state *s* safe?

・ 同 ト ・ ヨ ト ・ ヨ

Problems Results

Results: 1. Safety

Recognize Safe State

Instance : scheduling system, state *s* Question : Is state *s* safe?

Theorems (1996-2001)

For scheduling systems where either (i) every machine capacity > 1 or (ii) every job is unconstrained: state unsafe ⇔ state contains blocking set

(人間) ト く ヨ ト く ヨ ト

Problems Results

Results: 1. Safety

Recognize Safe State

Instance : scheduling system, state *s* Question : Is state *s* safe?

Theorems (1996-2001)

For scheduling systems where either (i) every machine capacity > 1 or (ii) every job is unconstrained: state unsafe ⇔ state contains blocking set

Lemma

Whether state contains blocking set is decidable in polynomial time

- 4 同 6 4 日 6 4 日 6

Problems Results

Results: 1. Safety

イロト イポト イヨト イヨ

Problems Results

Results: 1. Safety

Theorem

For scheduling system s.t. machines with capacity 1 occur only in unconstrained plans and out-stars:

 $state unsafe \iff state contains blocking set$

Problems Results

Results: 1. Safety

Theorem

For scheduling system s.t. machines with capacity 1 occur only in unconstrained plans and out-stars:

 $state \ unsafe \iff state \ contains \ blocking \ set$

Problems Results

Results: 1. Safety

Theorem

For scheduling system s.t. machines with capacity 1 occur only in unconstrained plans and out-stars:

state unsafe \iff state contains blocking set

Theorem

RECOGNIZE SAFE STATE NP-hard otherwise

()

Problems Results

Results: 2. Reachability

REACHABILITY

Instance : scheduling system, state s

Question : Can the system reach state s?

□ > < = > <

Problems Results

Results: 2. Reachability

REACHABILITY

Instance : scheduling system, state s

Question : Can the system reach state s?

Example:

 $\mathcal{M}: \{1,2,3\}$ $J_1: \qquad \underbrace{1}_{2} \underbrace{1}_{3}$ $J_2: \qquad \underbrace{1}_{2} \underbrace{1}_{3} \underbrace{1}_{3}$

□→ < □→</p>

Problems Results

Results: 2. Reachability

REACHABILITY

Instance : scheduling system, state *s* Question : Can the system reach state *s*?

Example:

$$\mathcal{M}: \{1,2,3\} \qquad \qquad \mathcal{M}^{\rho}: \{1,2,3\} \\ J_{1}: & \bullet \longrightarrow \bullet \\ J_{2}: & \bullet \to \bullet \\$$

< 47 ▶

→ 3 → 4 3

Problems Results

Results: 2. Reachability

REACHABILITY

Instance : scheduling system, state *s* Question : Can the system reach state *s*?

Example:

$$\mathcal{M}: \{1,2,3\} \qquad \qquad \mathcal{M}^{\rho}: \{1,2,3\} \\ J_{1}: & \bullet \to \bullet \\ J_{2}: & \bullet \to \bullet \\$$

★ ∃ →

Problems Results

Results: 2. Reachability

REACHABILITY

Instance : scheduling system, state *s* Question : Can the system reach state *s*?

Example:

$$\mathcal{M}: \{1,2,3\} \qquad \qquad \mathcal{M}^{\rho}: \{1,2,3\} \\ J_{1}: \qquad \stackrel{\bullet}{\underset{1 \ 2 \ 3}{}} \qquad \qquad J_{1}^{\rho}: \qquad \stackrel{\bullet}{\underset{1 \ 2 \ 3}{}} \\ J_{2}: \qquad \stackrel{\bullet}{\underset{1 \ 2 \ 3}{}} \qquad \qquad J_{2}^{\rho}: \qquad \stackrel{\bullet}{\underset{1 \ 2 \ 3}{}}$$

・ 同 ト ・ ヨ ト ・ ヨ

Problems Results

Results: 2. Reachability

REACHABILITY

Instance : scheduling system, state *s* Question : Can the system reach state *s*?

Example:

・ 同 ト ・ ヨ ト ・ ヨ

Problems Results

Results: 2. Reachability

REACHABILITY

Instance : scheduling system, state s

Question : Can the system reach state s?

Lemma

State s reachable \iff state $\rho(s)$ is safe in new system

- 4 同 ト 4 ヨ ト 4 ヨ ト

Results: 2. Reachability

REACHABILITY

Instance : scheduling system, state s

Question : Can the system reach state s?

Lemma

State s reachable \iff state ho(s) is safe in new system

Theorem

REACHABILITY is decidable in polynomial time for scheduling system where machines with capacity 1 occur only in unconstrained plans and in-stars, and NP-hard otherwise.

Problems Results

Results: 3. Deadlock

Deadlock

Instance : scheduling system

Question : Can the system fall into a deadlock?

・ 同 ト ・ ヨ ト ・ ヨ ト

Problems Results

Results: 3. Deadlock

Deadlock

- Instance : scheduling system
- Question : Can the system fall into a deadlock?

<ロ> <同> <同> < 同> < 同>

NOT (• or ⊷)

・ロト ・回ト ・ヨト ・ヨト

э.

イロン イロン イヨン イヨン

NOT (🔹 or) $\lambda \sim \alpha$

《口》《聞》《臣》《臣》

Proof: 1. Safety

sketch

Decomposition: machine β s.t. set $\gamma := \operatorname{succ}(\beta)$ minimal, $\alpha \neq \beta$ sink on non-succesors, call rest δ .

A B M A B M

Proof: 1. Safety

Eggermont, Woeginger Reachability and deadlocking in multi-stage scheduling

æ

Proof: 1. Safety

Eggermont, Woeginger Reachability and deadlocking in multi-stage scheduling

æ

Proof: 1. Safety

<ロト < 同ト < 三ト

æ

-

<ロ> <同> <同> < 同> < 同>

æ

Proof: 1. Safety

< E

- \Box : internal machine
- \diamond : input machine
- O: output machine

Proof: 1. Safety

Eggermont, Woeginger Reachability and deadlocking in multi-stage scheduling

<ロ> <同> <同> < 同> < 同>

æ

Proof: 1. Safety

Proof: 1. Safety

æ

Questions / Comments ?