Efficient Bounded Reachability Computation for Rectangular Automata

Xin Chen ${ }^{1}$ Erika Ábrahám ${ }^{1}$ Goran Frehse ${ }^{2}$
${ }^{1}$ RWTH Aachen University, Germany
${ }^{2}$ Université Grenoble 1 Joseph Fourier - Verimag, France
$$
\text { RP } 2011
$$

Outline

(1) Reachability computation for rectangular automata
(2) Compute reachable sets efficiently
(3) Comparison with PHAVer
(4) Future work

Outline

(1) Reachability computation for rectangular automata

(2) Compute reachable sets efficiently

(3) Comparison with PHAVer

4 Future work

Example: a mechanical stopwatch

Rectangular automata

Henzinger et al. What's Decidable about Hybrid Automata? In JCSS (1998)

Bounded reachability computation

Representations for the state sets

Representations for the state sets

- Polyhedron for the reachable set under a flow condition.

Representations for the state sets

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.

Representations for the state sets

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

Representations for the state sets

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

Representations for the state sets

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

Representations for the state sets

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

Representations for the state sets

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

Representations for the state sets

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

Representations for the state sets

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

Representations for the state sets

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

Representations for the state sets

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

- If $P: \mathcal{L}_{P}$ and $Q: \mathcal{L}_{Q}$, then $P \cap Q: \mathcal{L}_{P} \cup \mathcal{L}_{Q}$.

Facets and constraints

If $P \subseteq \mathbb{R}^{d}$ and $\operatorname{dim}(P)=d^{\prime}$, then

- facets: $\left(d^{\prime}-1\right)$-faces, vertices: 0 -faces;
- there are $N F(P)+2\left(d-d^{\prime}\right)$ constraints needed to define P where $N F(P)$ is the number of P 's facets.

Facets and constraints

If $P \subseteq \mathbb{R}^{d}$ and $\operatorname{dim}(P)=d^{\prime}$, then

- facets: $\left(d^{\prime}-1\right)$-faces, vertices: 0 -faces;
- there are $N F(P)+2\left(d-d^{\prime}\right)$ constraints needed to define P where $N F(P)$ is the number of P 's facets.

Facets and constraints

If $P \subseteq \mathbb{R}^{d}$ and $\operatorname{dim}(P)=d^{\prime}$, then

- facets: $\left(d^{\prime}-1\right)$-faces, vertices: 0 -faces;
- there are $N F(P)+2\left(d-d^{\prime}\right)$ constraints needed to define P where $N F(P)$ is the number of P 's facets.

Facets and constraints

If $P \subseteq \mathbb{R}^{d}$ and $\operatorname{dim}(P)=d^{\prime}$, then

- facets: $\left(d^{\prime}-1\right)$-faces, vertices: 0 -faces;
- there are $N F(P)+2\left(d-d^{\prime}\right)$ constraints needed to define P where $N F(P)$ is the number of P 's facets.

Facets and constraints

If $P \subseteq \mathbb{R}^{d}$ and $\operatorname{dim}(P)=d^{\prime}$, then

- facets: $\left(d^{\prime}-1\right)$-faces, vertices: 0 -faces;
- there are $N F(P)+2\left(d-d^{\prime}\right)$ constraints needed to define P where $N F(P)$ is the number of P 's facets.

Minkowski sum

$$
\begin{aligned}
& \begin{array}{r|rrr}
x_{2} \\
3 \\
3 & & & \\
2 & & \\
1 & \square & & \\
1 & & & \\
\hline 0 & 1 & 2 & 3
\end{array} x_{1} \\
& P \oplus Q=\{p+q \mid p \in P \text { and } q \in Q\}
\end{aligned}
$$

Reachable sets under flow transitions

Reachable sets under flow transitions

Reachable sets under flow transitions

Reachable sets under flow transitions

Reachable sets under flow transitions

Reachable sets under flow transitions

Reachable sets under flow transitions

Reachable sets under flow transitions

Reachable sets under flow transitions

Reachable sets under flow transitions

Reachable sets under flow transitions

Reachable sets under flow transitions

Reachable sets under flow transitions

Reachable sets under flow transitions

Classical method for computing $R_{\ell}(P)$

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97
Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

Classical method for computing $R_{\ell}(P)$

- Compute the vertices of $R_{\ell}(P)=(P \oplus \operatorname{cone}(Q)) \cap \operatorname{Inv}(\ell)$.

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97
Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

Classical method for computing $R_{\ell}(P)$

- Compute the vertices of $R_{\ell}(P)=(P \oplus \operatorname{cone}(Q)) \cap \operatorname{Inv}(\ell)$.
- Example:

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97
Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

Classical method for computing $R_{\ell}(P)$

- Compute the vertices of $R_{\ell}(P)=(P \oplus \operatorname{cone}(Q)) \cap \operatorname{Inv}(\ell)$.
- Example:

- Used by HyTech and PHAVer.

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97
Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

Classical method for computing $R_{\ell}(P)$

- Compute the vertices of $R_{\ell}(P)=(P \oplus \operatorname{cone}(Q)) \cap \operatorname{Inv}(\ell)$.
- Example:

- Used by HyTech and PHAVer.
- Disadvantages:

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97
Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

Classical method for computing $R_{\ell}(P)$

- Compute the vertices of $R_{\ell}(P)=(P \oplus \operatorname{cone}(Q)) \cap \operatorname{Inv}(\ell)$.
- Example:

- Used by HyTech and PHAVer.
- Disadvantages:
(1) $O\left(2^{d}\right)$ many vertices for each flow condition;

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97
Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

Classical method for computing $R_{\ell}(P)$

- Compute the vertices of $R_{\ell}(P)=(P \oplus \operatorname{cone}(Q)) \cap \operatorname{Inv}(\ell)$.
- Example:

- Used by HyTech and PHAVer.
- Disadvantages:
(1) $O\left(2^{d}\right)$ many vertices for each flow condition;
(2) intersection with an invariant could generate a large number of vertices.
Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97
Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

Reachable sets under jumps

ℓ

Reachable sets under jumps

ℓ

Reachable sets under jumps

Reachable sets under jumps

ℓ

- Computed via projection and Minkowski sum.

Reachable sets under jumps

ℓ

- Computed via projection and Minkowski sum.
- At least $O\left(2^{d}\right)$ many vertices need to be handle.

Our goal

- The reachable set computation under a flow condition is polynomial in d.
- The bounded reachability computation is cheap.

Outline

(1) Reachability computation for rectangular automata
(2) Compute reachable sets efficiently
(3) Comparison with PHAVer

4 Future work

Properties of the facets of R

The properties of a facet F_{R} of $R=P \oplus \operatorname{cone}(Q)$:

Properties of the facets of R

The properties of a facet F_{R} of $R=P \oplus \operatorname{cone}(Q)$:

Properties of the facets of R

The properties of a facet F_{R} of $R=P \oplus \operatorname{cone}(Q)$:

Properties of the facets of R

The properties of a facet F_{R} of $R=P \oplus \operatorname{cone}(Q)$:

- Case 1: F_{R} is either a facet of P, or

Properties of the facets of R

The properties of a facet F_{R} of $R=P \oplus \operatorname{cone}(Q)$:

- Case 1: F_{R} is either a facet of P, or

Properties of the facets of R

The properties of a facet F_{R} of $R=P \oplus \operatorname{cone}(Q)$:

- Case 1: F_{R} is either a facet of P, or
- Case 2: $F_{R}=\bigcup_{\lambda \geq 0}\left(F_{P} \oplus \lambda F_{Q}\right)$ where F_{P}, F_{Q} are nonempty faces of P, Q respectively and $F_{P} \oplus F_{Q}$ is a face of $P \oplus Q$.

Properties of the facets of R

The properties of a facet F_{R} of $R=P \oplus \operatorname{cone}(Q)$:

- Case 1: F_{R} is either a facet of P, or
- Case 2: $F_{R}=\bigcup_{\lambda \geq 0}\left(F_{P} \oplus \lambda F_{Q}\right)$ where F_{P}, F_{Q} are nonempty faces of P, Q respectively and $F_{P} \oplus F_{Q}$ is a face of $P \oplus Q$.

Properties of the facets of R

The properties of a facet F_{R} of $R=P \oplus \operatorname{cone}(Q)$:

- Case 1: F_{R} is either a facet of P, or
- Case 2: $F_{R}=\bigcup_{\lambda \geq 0}\left(F_{P} \oplus \lambda F_{Q}\right)$ where F_{P}, F_{Q} are nonempty faces of P, Q respectively and $F_{P} \oplus F_{Q}$ is a face of $P \oplus Q$.

Properties of the facets of R

The properties of a facet F_{R} of $R=P \oplus \operatorname{cone}(Q)$:

- Case 1: F_{R} is either a facet of P, or
- Case 2: $F_{R}=\bigcup_{\lambda \geq 0}\left(F_{P} \oplus \lambda F_{Q}\right)$ where F_{P}, F_{Q} are nonempty faces of P, Q respectively and $F_{P} \oplus F_{Q}$ is a face of $P \oplus Q$.
$F_{P} \oplus F_{Q}$ is at least (d-2)-dimensional.

How to compute the constraints for R

Assume $P: \mathcal{L}_{P}$ and $P \oplus Q: \mathcal{L}_{P \oplus Q}$ are d-dimensional.

How to compute the constraints for R

Assume $P: \mathcal{L}_{P}$ and $P \oplus Q: \mathcal{L}_{P \oplus Q}$ are d-dimensional. Main procedure:
(1) Collect the valid constraints from \mathcal{L}_{P} for R. The facets of Case 1.

How to compute the constraints for R

Assume $P: \mathcal{L}_{P}$ and $P \oplus Q: \mathcal{L}_{P \oplus Q}$ are d-dimensional. Main procedure:
(1) Collect the valid constraints from \mathcal{L}_{P} for R. The facets of Case 1.
(2) Collect the valid constraints from $\mathcal{L}_{P \oplus Q}$ for R. The facets of Case 2 where $F_{P} \oplus F_{Q}$ is ($d-1$)-dimensional.

How to compute the constraints for R

Assume $P: \mathcal{L}_{P}$ and $P \oplus Q: \mathcal{L}_{P \oplus Q}$ are d-dimensional. Main procedure:
(1) Collect the valid constraints from \mathcal{L}_{P} for R. The facets of Case 1.
(2) Collect the valid constraints from $\mathcal{L}_{P \oplus Q}$ for R. The facets of Case 2 where $F_{P} \oplus F_{Q}$ is ($d-1$)-dimensional.
(3) For every two constraints $L_{i}, L_{j} \in \mathcal{L}_{P \oplus Q}$, compute $L_{i, j}$. The facets of Case 2 where $F_{P} \oplus F_{Q}$ is (d-2)-dimensional.

How to compute the constraints for R

Assume $P: \mathcal{L}_{P}$ and $P \oplus Q: \mathcal{L}_{P \oplus Q}$ are d-dimensional. Main procedure:
(1) Collect the valid constraints from \mathcal{L}_{P} for R. The facets of Case 1.
(2) Collect the valid constraints from $\mathcal{L}_{P \oplus Q}$ for R. The facets of Case 2 where $F_{P} \oplus F_{Q}$ is ($d-1$)-dimensional.
(3) For every two constraints $L_{i}, L_{j} \in \mathcal{L}_{P \oplus Q}$, compute $L_{i, j}$. The facets of Case 2 where $F_{P} \oplus F_{Q}$ is (d-2)-dimensional.

Complexity: $O\left(\left|\mathcal{L}_{P}\right|+\left|\mathcal{L}_{P \oplus Q}\right|+\left|\mathcal{L}_{P \oplus Q}\right|^{2}\right)$ linear programs need to be solved.

Check the validity of a constraint

Polyhedron $S: \mathcal{L}_{S}$.

Check the validity of a constraint

Polyhedron $S: \mathcal{L}_{S}$.

Check the validity of a constraint

Polyhedron $S: \mathcal{L}_{S}$.

$$
\begin{gathered}
L: c^{T} x \leq z^{\prime} \\
z^{\prime}<z
\end{gathered}
$$

Check the validity of a constraint

Polyhedron $S: \mathcal{L}_{S}$.

$$
\begin{gathered}
L: c^{T} x \leq z^{\prime} \\
z^{\prime}=z
\end{gathered}
$$

Check the validity of a constraint

Polyhedron $S: \mathcal{L}_{S}$.

$$
\begin{gathered}
L: c^{T} x \leq z^{\prime} \\
z^{\prime}>z
\end{gathered}
$$

Check the validity of a constraint

Polyhedron $S: \mathcal{L}_{S}$.

$$
\begin{gathered}
L: c^{T} x \leq z^{\prime} \\
z^{\prime}>z
\end{gathered}
$$

L is valid for S iff $\rho_{S}(c) \leq z^{\prime}$,
where $\rho_{S}(c)=\sup c^{T} x \quad$ s.t. $\quad x$ satisfies all $L_{S} \in \mathcal{L}_{S}$.

The validity of a constraint for R

The validity of a constraint for R

For any vector $c \in \mathbb{R}^{d}$ we have that

$$
\rho_{R}(c)=\rho_{P \oplus \operatorname{cone}(Q)}(c)=\sup _{\lambda \geq 0}\left(\rho_{P}(c)+\lambda \cdot \rho_{Q}(c)\right)
$$

The validity of a constraint for R

For any vector $c \in \mathbb{R}^{d}$ we have that

$$
\rho_{R}(c)=\rho_{P \oplus \operatorname{cone}(Q)}(c)=\sup _{\lambda \geq 0}\left(\rho_{P}(c)+\lambda \cdot \rho_{Q}(c)\right)
$$

A constraint $L: c^{T} x \leq z$ is valid for R iff

$$
\rho_{P}(c) \leq z \text { and } \rho_{Q}(c) \leq 0 .
$$

An example of $L_{i, j}$

$$
g_{i, j}=\alpha g_{i}+\beta g_{j} \text { where } \alpha, \beta \geq 0 \text { and } \alpha+\beta>0 .
$$

An example of $L_{i, j}$

$$
g_{i, j}=\alpha g_{i}+\beta g_{j} \text { where } \alpha, \beta \geq 0 \text { and } \alpha+\beta>0 .
$$

$H_{i, j}: c^{T} x=z$ can be found by linear programming and $L_{i, j}: c^{T} x \leq z$.

Compute the reachable set after a jump

Assume \mathcal{L} defines the reachable set under a flow condition.
(1) Eliminate all reset variables from the constraints in \mathcal{L} by Fourier-Motzkin elimination.
(2) Add the constraints $x_{i} \leq b,-x_{i} \leq-a$ into the new constraint set if there is a reset $x_{i}:=[a, b]$.

Complexity of the computation

- The set of bounded executions along the location sequence:

$$
\ell_{0} \xrightarrow{e_{1}} \ell_{1} \xrightarrow{e_{2}} \cdots \xrightarrow{e_{k}} \ell_{k}
$$

- The corresponding computation sequence:

$$
\begin{aligned}
& \quad R_{\ell_{0}}\left(X_{0}\right) \xrightarrow{e_{1}} R_{\ell_{1}}\left(X_{1}\right) \xrightarrow{e_{2}} \cdots \xrightarrow{e_{k}} R_{\ell_{k}}\left(X_{k}\right) \\
& \text { where } X_{j}=R_{e_{j}}\left(R_{\ell_{j-1}}\left(X_{j-1}\right) \cap \operatorname{Guard}\left(e_{j}\right) \cap \operatorname{Inv}\left(\ell_{j-1}\right)\right) \text { for } \\
& 1 \leq j \leq k .
\end{aligned}
$$

Complexity of the computation

Complexity of the computation

- The set X_{j} can be expressed by

$$
\bigcup_{a_{j-1} \leq \lambda_{j-1} \leq b_{j-1}} \cdots \bigcup_{a_{0} \leq \lambda_{0} \leq b_{0}} R_{e_{j}}\left(\left(\cdots R_{e_{1}}\left(\left(X_{0} \oplus \lambda_{0} B_{0}\right) \cap G_{0}\right) \cdots \oplus \lambda_{j-1} B_{j-1}\right) \cap G_{j-1}\right)
$$

Complexity of the computation

- The set X_{j} can be expressed by

$$
\bigcup_{a_{j-1} \leq \lambda_{j-1} \leq b_{j-1}} \cdots \bigcup_{a_{0} \leq \lambda_{0} \leq b_{0}} R_{e_{j}}\left(\left(\cdots R_{e_{1}}\left(\left(X_{0} \oplus \lambda_{0} B_{0}\right) \cap G_{0}\right) \cdots \oplus \lambda_{j-1} B_{j-1}\right) \cap G_{j-1}\right)
$$

- The number of the facets of X_{j} is bounded by

$$
\mathcal{F}_{j}=\sum_{\max (d-j-1,0) \leq d^{\prime} \leq d-1}\binom{j}{d-d^{\prime}-1} 2^{d-d^{\prime}}\binom{d}{d^{\prime}}
$$

Complexity of the computation

- The set X_{j} can be expressed by

$$
\bigcup_{a_{j-1} \leq \lambda_{j-1} \leq b_{j-1}} \cdots \bigcup_{a_{0} \leq \lambda_{0} \leq b_{0}} R_{e_{j}}\left(\left(\cdots R_{e_{1}}\left(\left(X_{0} \oplus \lambda_{0} B_{0}\right) \cap G_{0}\right) \cdots \oplus \lambda_{j-1} B_{j-1}\right) \cap G_{j-1}\right)
$$

- The number of the facets of X_{j} is bounded by

$$
\mathcal{F}_{j}=\sum_{\max (d-j-1,0) \leq d^{\prime} \leq d-1}\binom{j}{d-d^{\prime}-1} 2^{d-d^{\prime}}\binom{d}{d^{\prime}}
$$

- \mathcal{F}_{j} is polynomial in \mathcal{F}_{j-1}.

Complexity of the computation

- The set X_{j} can be expressed by

$$
\bigcup_{a_{j-1} \leq \lambda_{j-1} \leq b_{j-1}} \cdots \bigcup_{a_{0} \leq \lambda_{0} \leq b_{0}} R_{e_{j}}\left(\left(\cdots R_{e_{1}}\left(\left(X_{0} \oplus \lambda_{0} B_{0}\right) \cap G_{0}\right) \cdots \oplus \lambda_{j-1} B_{j-1}\right) \cap G_{j-1}\right)
$$

- The number of the facets of X_{j} is bounded by

$$
\mathcal{F}_{j}=\sum_{\max (d-j-1,0) \leq d^{\prime} \leq d-1}\binom{j}{d-d^{\prime}-1} 2^{d-d^{\prime}}\binom{d}{d^{\prime}}
$$

- \mathcal{F}_{j} is polynomial in \mathcal{F}_{j-1}.
- If j is fixed, then \mathcal{F}_{j} is polynomial in d when d is large enough.

Main result

Theorem

The computational complexity of the reachable set with a bounded number of jumps is polynomial in d if the bound is viewed as a constant and d is large enough.

Outline

(1) Reachability computation for rectangular automata

(2) Compute reachable sets efficiently
(3) Comparison with PHAVer

4 Future work

The scalable model

The experimental results

$\operatorname{Lin} \operatorname{Lin}$	Jmp	PHAVer			Our method (on MATLAB)				
		Mem	Time	Mem	Time	ToLP	LPs	Cons	
5	2	9.9	0.81	<10	2.36	2.20	1837	81	
6	2	48.1	21.69	<10	4.96	4.68	3127	112	
7	2	235.7	529.01	<10	15.95	15.28	7214	163	
8	2	-	-	<10	27.42	26.48	10517	209	
9	2	-	-	<10	107.99	105.59	23639	287	
10	2	-	-	<10	218.66	215.45	32252	354	
5	4	10.2	1.51	<10	4.82	4.50	3734	167	
6	4	51.1	35.52	<10	11.25	10.64	7307	240	
7	4	248.1	1191.64	<10	32.93	31.60	16101	352	
8	4	-	-	<10	72.04	69.81	27375	466	
9	4	-	-	<10	240.51	235.61	64863	641	
10	4	-	-	<10	543.05	535.77	86633	816	

Platform: Intel I7 2.8 GHz CPU, 4GB memory, Linux

Outline

(1) Reachability computation for rectangular automata

(2) Compute reachable sets efficiently

3 Comparison with PHAVer

4 Future work

Future work

- Bounded reachability computation for linear hybrid automata.
- Synthesis of switching controllers for linear hybrid automata.
- Approximative reachability computation for nonlinear systems.

