Efficient Bounded Reachability Computation for Rectangular Automata

Xin Chen¹ Erika Ábrahám¹ Goran Frehse²

¹RWTH Aachen University, Germany

²Université Grenoble 1 Joseph Fourier - Verimag, France

RP 2011

Efficient Bounded Reachability Computation for Rectangular Automata

1 Reachability computation for rectangular automata

2 Compute reachable sets efficiently

1 Reachability computation for rectangular automata

2 Compute reachable sets efficiently

3 Comparison with PHAVer

Rectangular automata

Henzinger et al. What's Decidable about Hybrid Automata? In JCSS (1998)

Efficient Bounded Reachability Computation for Rectangular Automata

UNIVERSITY Xin Chen

Efficient Bounded Reachability Computation for Rectangular Automata

UNIVERSITY Xin Chen

Efficient Bounded Reachability Computation for Rectangular Automata

UNIVERSITY Xin Chen

UNVERSITY Xin Chen

• Polyhedron for the reachable set under a flow condition.

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

- Polyhedron for the reachable set under a flow condition.
- Representations for polyhedra: vertex-based and constraint-based.
- Example:

• If $P : \mathcal{L}_P$ and $Q : \mathcal{L}_Q$, then $P \cap Q : \mathcal{L}_P \cup \mathcal{L}_Q$.

- facets: (d'-1)-faces, vertices: 0-faces;
- there are NF(P) + 2(d d') constraints needed to define P where NF(P) is the number of P's facets.

- facets: (d'-1)-faces, vertices: 0-faces;
- there are NF(P) + 2(d d') constraints needed to define P where NF(P) is the number of P's facets.

- facets: (d'-1)-faces, vertices: 0-faces;
- there are NF(P) + 2(d d') constraints needed to define P where NF(P) is the number of P's facets.

- facets: (d'-1)-faces, vertices: 0-faces;
- there are NF(P) + 2(d d') constraints needed to define P where NF(P) is the number of P's facets.

- facets: (d'-1)-faces, vertices: 0-faces;
- there are NF(P) + 2(d d') constraints needed to define P where NF(P) is the number of P's facets.

UNIVERSITY Xin Chen

UNIVERSITY Xin Chen

UNIVERSITY Xin Chen

WIVERSITY Xin Chen

WIVERSITY Xin Chen

UNIVERSITY Xin Chen

UNIVERSITY Xin Chen

UNIVERSITY Xin Chen

UNIVERSITY Xin Chen

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97 Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

UNIVERSITY Xin Chen

• Compute the vertices of $R_{\ell}(P) = (P \oplus cone(Q)) \cap Inv(\ell)$.

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97 Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

UNIVERSITY Xin Chen

- Compute the vertices of $R_{\ell}(P) = (P \oplus cone(Q)) \cap Inv(\ell)$.
- Example:

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97 Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

UNIVERSITY Xin Chen

- Compute the vertices of $R_{\ell}(P) = (P \oplus cone(Q)) \cap Inv(\ell)$.
- Example:

• Used by HyTech and PHAVer.

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97 Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

unversity Xin Chen

- Compute the vertices of $R_{\ell}(P) = (P \oplus cone(Q)) \cap Inv(\ell)$.
- Example:

- Used by HyTech and PHAVer.
- Disadvantages:

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97 Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

unversity Xin Chen

- Compute the vertices of $R_{\ell}(P) = (P \oplus cone(Q)) \cap Inv(\ell)$.
- Example:

- Used by HyTech and PHAVer.
- Disadvantages:
 - $O(2^d)$ many vertices for each flow condition;

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97 Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

unversity Xin Chen

- Compute the vertices of $R_{\ell}(P) = (P \oplus cone(Q)) \cap Inv(\ell)$.
- Example:

- Used by HyTech and PHAVer.
- Disadvantages:
 - $O(2^d)$ many vertices for each flow condition;
 - intersection with an invariant could generate a large number of vertices.

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV'97 Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC'05

unversity Xin Chen

• Computed via projection and Minkowski sum.

- Computed via projection and Minkowski sum.
- At least $O(2^d)$ many vertices need to be handle.

- The reachable set computation under a flow condition is polynomial in *d*.
- The bounded reachability computation is cheap.

Reachability computation for rectangular automata

2 Compute reachable sets efficiently

The properties of a facet F_R of $R = P \oplus cone(Q)$:

The properties of a facet F_R of $R = P \oplus cone(Q)$:

UNIVERSITY Xin Chen

The properties of a facet F_R of $R = P \oplus cone(Q)$:

UNIVERSITY Xin Chen

The properties of a facet F_R of $R = P \oplus cone(Q)$:

• Case 1: F_R is either a facet of P, or

The properties of a facet F_R of $R = P \oplus cone(Q)$:

• Case 1: F_R is either a facet of P, or

UNIVERSITY Xin Chen

- Case 1: *F_R* is either a facet of *P*, or
- Case 2: F_R = U_{λ≥0}(F_P ⊕ λF_Q) where F_P, F_Q are nonempty faces of P, Q respectively and F_P ⊕ F_Q is a face of P ⊕ Q.

- Case 1: F_R is either a facet of P, or
- Case 2: F_R = U_{λ≥0}(F_P ⊕ λF_Q) where F_P, F_Q are nonempty faces of P, Q respectively and F_P ⊕ F_Q is a face of P ⊕ Q.

- Case 1: *F_R* is either a facet of *P*, or
- Case 2: F_R = U_{λ≥0}(F_P ⊕ λF_Q) where F_P, F_Q are nonempty faces of P, Q respectively and F_P ⊕ F_Q is a face of P ⊕ Q.

- Case 1: F_R is either a facet of P, or
- Case 2: F_R = U_{λ≥0}(F_P ⊕ λF_Q) where F_P, F_Q are nonempty faces of P, Q respectively and F_P ⊕ F_Q is a face of P ⊕ Q.
 F_P ⊕ F_Q is at least (d-2)-dimensional.

Collect the valid constraints from *L_P* for *R*.
 The facets of Case 1.

- Collect the valid constraints from L_P for R.
 The facets of Case 1.
- Collect the valid constraints from L_{P⊕Q} for R.
 The facets of Case 2 where F_P ⊕ F_Q is (d−1)-dimensional.

- Collect the valid constraints from L_P for R.
 The facets of Case 1.
- Collect the valid constraints from L_{P⊕Q} for R.
 The facets of Case 2 where F_P ⊕ F_Q is (d−1)-dimensional.
- Solution For every two constraints $L_i, L_j \in \mathcal{L}_{P \oplus Q}$, compute $L_{i,j}$. The facets of Case 2 where $F_P \oplus F_Q$ is (d-2)-dimensional.

- Collect the valid constraints from L_P for R.
 The facets of Case 1.
- Collect the valid constraints from L_{P⊕Q} for R.
 The facets of Case 2 where F_P ⊕ F_Q is (d−1)-dimensional.
- Solution For every two constraints $L_i, L_j \in \mathcal{L}_{P \oplus Q}$, compute $L_{i,j}$. The facets of Case 2 where $F_P \oplus F_Q$ is (d-2)-dimensional.

Complexity: $O(|\mathcal{L}_P| + |\mathcal{L}_{P \oplus Q}| + |\mathcal{L}_{P \oplus Q}|^2)$ linear programs need to be solved.

Polyhedron $S : \mathcal{L}_S$.

Polyhedron $S : \mathcal{L}_S$.

Polyhedron $S : \mathcal{L}_S$.

Polyhedron $S : \mathcal{L}_S$.

 $L: c^T x \le z'$ z' > z

Polyhedron $S : \mathcal{L}_S$.

L is valid for S iff $ho_S(c) \leq z'$,

where
$$\rho_{S}(c) = \sup c^{T} x \quad s.t. \quad x \text{ satisfies all } L_{S} \in \mathcal{L}_{S}.$$

WWERSTY Xin Chen

For any vector $c \in \mathbb{R}^d$ we have that

$$\rho_{R}(c) = \rho_{P \oplus cone(Q)}(c) = \sup_{\lambda \ge 0} (\rho_{P}(c) + \lambda \cdot \rho_{Q}(c))$$

For any vector $c \in \mathbb{R}^d$ we have that

$$\rho_{R}(c) = \rho_{P \oplus cone(Q)}(c) = \sup_{\lambda \ge 0} (\rho_{P}(c) + \lambda \cdot \rho_{Q}(c))$$

A constraint $L: c^T x \leq z$ is valid for R iff

 $\rho_P(c) \leq z \text{ and } \rho_Q(c) \leq 0.$

 $g_{i,j} = \alpha g_i + \beta g_j$ where $\alpha, \beta \ge 0$ and $\alpha + \beta > 0$.

 $g_{i,j} = \alpha g_i + \beta g_j$ where $\alpha, \beta \ge 0$ and $\alpha + \beta > 0$.

 $H_{i,j}$: $c^T x = z$ can be found by linear programming and $L_{i,j}$: $c^T x \leq z$.

Assume \mathcal{L} defines the reachable set under a flow condition.

- Eliminate all reset variables from the constraints in L by Fourier-Motzkin elimination.
- Add the constraints x_i ≤ b, -x_i ≤ -a into the new constraint set if there is a reset x_i := [a, b].

• The set of bounded executions along the location sequence:

$$\ell_0 \xrightarrow{e_1} \ell_1 \xrightarrow{e_2} \cdots \xrightarrow{e_k} \ell_k$$

• The corresponding computation sequence:

$$R_{\ell_0}(X_0) \xrightarrow{e_1} R_{\ell_1}(X_1) \xrightarrow{e_2} \cdots \xrightarrow{e_k} R_{\ell_k}(X_k)$$

where $X_j = R_{e_j}(R_{\ell_{j-1}}(X_{j-1}) \cap Guard(e_j) \cap Inv(\ell_{j-1}))$ for $1 \le j \le k$.

WWERSTY Xin Chen

• The set X_j can be expressed by

$$\bigcup_{a_{j-1}\leq\lambda_{j-1}\leq b_{j-1}}\cdots\bigcup_{a_0\leq\lambda_0\leq b_0}R_{e_j}((\cdots R_{e_1}((X_0\oplus\lambda_0B_0)\cap G_0)\cdots\oplus\lambda_{j-1}B_{j-1})\cap G_{j-1})$$

• The set X_j can be expressed by

$$\bigcup_{a_{j-1}\leq\lambda_{j-1}\leq b_{j-1}}\cdots\bigcup_{a_0\leq\lambda_0\leq b_0}R_{e_j}((\cdots R_{e_1}((X_0\oplus\lambda_0B_0)\cap G_0)\cdots\oplus\lambda_{j-1}B_{j-1})\cap G_{j-1})$$

• The number of the facets of X_j is bounded by

$$\mathcal{F}_{j} = \sum_{\max(d-j-1,0) \leq d' \leq d-1} \binom{j}{d-d'-1} 2^{d-d'} \binom{d}{d'}$$

• The set X_j can be expressed by

$$\bigcup_{a_{j-1}\leq\lambda_{j-1}\leq b_{j-1}}\cdots\bigcup_{a_0\leq\lambda_0\leq b_0}R_{e_j}((\cdots R_{e_1}((X_0\oplus\lambda_0B_0)\cap G_0)\cdots\oplus\lambda_{j-1}B_{j-1})\cap G_{j-1})$$

• The number of the facets of X_j is bounded by

$$\mathcal{F}_j = \sum_{\max(d-j-1,0) \leq d' \leq d-1} egin{pmatrix} j \ d-d'-1 \end{pmatrix} 2^{d-d'} egin{pmatrix} d \ d' \end{pmatrix}$$

• \mathcal{F}_j is polynomial in \mathcal{F}_{j-1} .

• The set X_j can be expressed by

$$\bigcup_{a_{j-1}\leq\lambda_{j-1}\leq b_{j-1}}\cdots\bigcup_{a_0\leq\lambda_0\leq b_0}R_{e_j}((\cdots R_{e_1}((X_0\oplus\lambda_0B_0)\cap G_0)\cdots\oplus\lambda_{j-1}B_{j-1})\cap G_{j-1})$$

• The number of the facets of X_j is bounded by

$$\mathcal{F}_j = \sum_{\max(d-j-1,0) \leq d' \leq d-1} egin{pmatrix} j \ d-d' - 1 \end{pmatrix} 2^{d-d'} egin{pmatrix} d \ d' \end{pmatrix}$$

- \mathcal{F}_j is polynomial in \mathcal{F}_{j-1} .
- If j is fixed, then \mathcal{F}_j is polynomial in d when d is large enough.

Theorem

The computational complexity of the reachable set with a bounded number of jumps is polynomial in d if the bound is viewed as a constant and d is large enough.

Reachability computation for rectangular automata

2 Compute reachable sets efficiently

The scalable model

Dim	Jmp	PHAVer		Our method (on MATLAB)				
		Mem	Time	Mem	Time	ToLP	LPs	Cons
5	2	9.9	0.81	< 10	2.36	2.20	1837	81
6	2	48.1	21.69	< 10	4.96	4.68	3127	112
7	2	235.7	529.01	< 10	15.95	15.28	7214	163
8	2	-	-	< 10	27.42	26.48	10517	209
9	2	-	-	< 10	107.99	105.59	23639	287
10	2	-	-	< 10	218.66	215.45	32252	354
5	4	10.2	1.51	< 10	4.82	4.50	3734	167
6	4	51.1	35.52	< 10	11.25	10.64	7307	240
7	4	248.1	1191.64	< 10	32.93	31.60	16101	352
8	4	-	-	< 10	72.04	69.81	27375	466
9	4	-	-	< 10	240.51	235.61	64863	641
10	4	-	-	< 10	543.05	535.77	86633	816

Platform: Intel I7 2.8 GHz CPU, 4GB memory, Linux

Reachability computation for rectangular automata

- 2 Compute reachable sets efficiently
- 3 Comparison with PHAVer

- Bounded reachability computation for linear hybrid automata.
- Synthesis of switching controllers for linear hybrid automata.
- Approximative reachability computation for nonlinear systems.