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Example: a mechanical stopwatch

ẋ = 0

ẋ = 1

ẋ = 0

x := 0

active

stopactive

reset: x := 0

ẋ ∈ [1− ε1, 1 + ε2]

x := [−ε3, ε4]
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Rectangular automata

· · ·

· · ·

· · ·

`

ẋ ∈ Flow(`)

x ∈ Inv(`) e : x ∈ Guard(e)
→ reset some xi

ẋ = (ẋ1, . . . , ẋd )T , ẋi ∈ [ci , di ] for all 1 ≤ i ≤ d

Flow condition

x = (x1, . . . , xd )T , xi ∈ [ui , ui ] for all 1 ≤ i ≤ d

Invariant

xi ∈ [g
i
, g i ] for all 1 ≤ i ≤ d

Jump
xi := [ai , bi ] for all 1 ≤ i ≤ d

Initialization

Henzinger et al. What’s Decidable about Hybrid Automata? In JCSS (1998)
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Bounded reachability computation
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Representations for the state sets

Polyhedron for the reachable set under a flow condition.

Representations for polyhedra: vertex-based and constraint-based.

Example:

x1

x2

0

x1

x2

0

If P : LP and Q : LQ , then P ∩ Q : LP ∪ LQ .
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Facets and constraints

If P ⊆ Rd and dim(P) = d ′, then

facets: (d ′ − 1)-faces, vertices: 0-faces;

there are NF(P) + 2(d − d ′) constraints needed to define P
where NF(P) is the number of P’s facets.
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Minkowski sum

x1

x2

1 2 3

1

2

3

0

P

⊕

x1

x2

1 2 3

1

2

3

0

Q =

x1

x2

1 2 3

1

2

3

0

P ⊕ Q

P ⊕ Q = {p + q | p ∈ P and q ∈ Q}
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Reachable sets under flow transitions

x1

x2

0

P

ẋ1

ẋ2

0

Q
cone(Q)

x1

x2

0

R`(P) = (P ⊕ cone(Q)) ∩ Inv(`)P ⊕ cone(Q)
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ẋ1

ẋ2
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Classical method for computing R`(P)

Compute the vertices of R`(P) = (P ⊕ cone(Q)) ∩ Inv(`).

Example:

x1

x2

0

P

ẋ1

ẋ2

0

Q

x1

x2

0

Used by HyTech and PHAVer.

Disadvantages:

1 O(2d) many vertices for each flow condition;
2 intersection with an invariant could generate a large number of

vertices.

Henzinger et al. HYTECH: A Model Checker for Hybrid Systems. CAV’97
Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. HSCC’05
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ẋ1

ẋ2
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ẋ1

ẋ2
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Reachable sets under jumps

`
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`′
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Computed via projection and Minkowski sum.

At least O(2d) many vertices need to be handle.
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Our goal

The reachable set computation under a flow condition is
polynomial in d .

The bounded reachability computation is cheap.
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Outline

1 Reachability computation for rectangular automata

2 Compute reachable sets efficiently

3 Comparison with PHAVer

4 Future work
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Properties of the facets of R

The properties of a facet FR of R = P ⊕ cone(Q):

Case 1: FR is either a facet of P, or

Case 2: FR =
⋃
λ≥0(FP ⊕ λFQ) where FP ,FQ are nonempty faces

of P,Q respectively and FP ⊕ FQ is a face of P ⊕ Q.

FP ⊕ FQ is at least (d−2)-dimensional.

P

P ⊕ Q

FR

FR

FP ⊕ FQ

FP
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How to compute the constraints for R

Assume P : LP and P ⊕ Q : LP⊕Q are d-dimensional.

Main procedure:

1 Collect the valid constraints from LP for R.
The facets of Case 1.

2 Collect the valid constraints from LP⊕Q for R.
The facets of Case 2 where FP ⊕ FQ is (d−1)-dimensional.

3 For every two constraints Li , Lj ∈ LP⊕Q , compute Li,j .
The facets of Case 2 where FP ⊕ FQ is (d−2)-dimensional.

Complexity: O(|LP |+ |LP⊕Q |+ |LP⊕Q |2) linear programs need to be

solved.
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Check the validity of a constraint

Polyhedron S : LS .

S

c

L : cT x ≤ z ′

z ′ < z

L : cT x ≤ z ′

z ′ = z

L : cT x ≤ z ′

z ′ > z

L is valid for S iff ρS(c) ≤ z ′,

where ρS(c) = sup cT x s.t. x satisfies all LS ∈ LS .
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The validity of a constraint for R

For any vector c ∈ Rd we have that

ρR(c) = ρP⊕cone(Q)(c) = sup
λ≥0

(ρP(c) + λ · ρQ(c))

A constraint L : cT x ≤ z is valid for R iff

ρP(c) ≤ z and ρQ(c) ≤ 0.
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An example of Li ,j

Hi
Hj

P

P ⊕ Q

Hi ∩ Hj

Hi ,j

gi

gj

gi ,j

gi,j = αgi + βgj where α, β ≥ 0 and α + β > 0.

Hi,j : cT x = z can be found by linear programming and Li,j : cT x ≤ z .
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Compute the reachable set after a jump

Assume L defines the reachable set under a flow condition.

1 Eliminate all reset variables from the constraints in L by
Fourier-Motzkin elimination.

2 Add the constraints xi ≤ b,−xi ≤ −a into the new constraint
set if there is a reset xi := [a, b].
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Complexity of the computation

The set of bounded executions along the location sequence:

`0
e1−→ `1

e2−→ · · · ek−→ `k

The corresponding computation sequence:

R`0(X0)
e1−→ R`1(X1)

e2−→ · · · ek−→ R`k (Xk)

where Xj = Rej (R`j−1
(Xj−1) ∩ Guard(ej) ∩ Inv(`j−1)) for

1 ≤ j ≤ k.
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Complexity of the computation

The set Xj can be expressed by⋃
aj−1≤λj−1≤bj−1

· · ·
⋃

a0≤λ0≤b0

Rej ((· · ·Re1 ((X0⊕λ0B0)∩G0) · · ·⊕λj−1Bj−1)∩Gj−1)

The number of the facets of Xj is bounded by

Fj =
∑

max(d−j−1,0)≤d′≤d−1

(
j

d − d ′ − 1

)
2d−d′

(
d

d ′

)

Fj is polynomial in Fj−1.

If j is fixed, then Fj is polynomial in d when d is large enough.
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Main result

Theorem

The computational complexity of the reachable set with a bounded
number of jumps is polynomial in d if the bound is viewed as a
constant and d is large enough.
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Outline

1 Reachability computation for rectangular automata

2 Compute reachable sets efficiently

3 Comparison with PHAVer

4 Future work
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The scalable model

`0

ẋi ∈ [i − 1, 2i − 1]

xi ∈ [−10d , 10d ]

`1

ẋi ∈ [−i ,−i + 1]

xi ∈ [−10d , 10d ]

xi ∈ [0, 1]

xd ≥ 5d →

xd ≤ −8d →

xj := [−2,−1] where

dd/2e+ 1 ≤ j ≤ d

xj := [0, 1] where 1 ≤ j ≤ dd/2e
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The experimental results

Dim Jmp
PHAVer Our method (on MATLAB)

Mem Time Mem Time ToLP LPs Cons

5 2 9.9 0.81 < 10 2.36 2.20 1837 81

6 2 48.1 21.69 < 10 4.96 4.68 3127 112

7 2 235.7 529.01 < 10 15.95 15.28 7214 163

8 2 - - < 10 27.42 26.48 10517 209

9 2 - - < 10 107.99 105.59 23639 287

10 2 - - < 10 218.66 215.45 32252 354

5 4 10.2 1.51 < 10 4.82 4.50 3734 167

6 4 51.1 35.52 < 10 11.25 10.64 7307 240

7 4 248.1 1191.64 < 10 32.93 31.60 16101 352

8 4 - - < 10 72.04 69.81 27375 466

9 4 - - < 10 240.51 235.61 64863 641

10 4 - - < 10 543.05 535.77 86633 816

Platform: Intel I7 2.8 GHz CPU, 4GB memory, Linux
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Future work

Bounded reachability computation for linear hybrid automata.

Synthesis of switching controllers for linear hybrid automata.

Approximative reachability computation for nonlinear systems.
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