Characterizing Conclusive Approximations by Logical Formulae RP 2011

Y. Boichut, B. Dao and V. Murat

Genova, DISI, 09/29/2011

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae

< 🗇 🕨

Contents

- 2 Some details about Rewriting Approximations
 - Tree Automata
 - Tree Automata & Patterns
 - *R*-closed Tree Automata = Rewriting Approximations
- Oharacterization of Conclusive Approximations
 - Tree automata with Variables as States
 - Characterization of Conclusive Rewriting Approximations

4 Conclusion

Some details about Rewriting Approximations Characterization of Conclusive Approximations Conclusion

Contents

2 Some details about Rewriting Approximations

- Tree Automata
- Tree Automata & Patterns
- *R*-closed Tree Automata = Rewriting Approximations
- 3 Characterization of Conclusive Approximations
 - Tree automata with Variables as States
 - Characterization of Conclusive Rewriting Approximations

4 Conclusion

イロト イポト イヨト イヨト

Term Reachability Analysis as a Verification Technique

Rewriting techniques used for

- Verification of Java programs : [5]
- Verification of security protocols : [3,13,15]
- Communication protocols : [2]

State of the studied system = Term

Sets of terms specified by tree automata languages

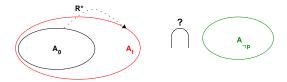
Behavior of the system = Rewriting relation

2 general approaches : Exact computation or approximated computation of rewriting successors

イロト イポト イヨト イヨト

Verifying a System $\boldsymbol{\Sigma}$ using Exact Computations

- \mathcal{R} : TRS or tree transducer
- Computation of theoretical fix-point automaton A_f from an initial one A_0 representing **initial configurations** of Σ
- Verifying a property p
 - $\mathcal{A}_{\neg p}$: set of bad configuration forbidden terms
 - $\mathcal{L}(\mathcal{A}_f) \cap \mathcal{L}(\mathcal{A}_{\neg p}) = \emptyset$

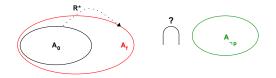


$$\mathcal{L}(\mathcal{A}_0) \subseteq \mathcal{L}(\mathcal{A}_1) \subseteq \ldots \subseteq \mathcal{L}(\mathcal{A}_f)$$

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae

Some details about Rewriting Approximations Characterization of Conclusive Approximations Conclusion

Verifying a System $\boldsymbol{\Sigma}$ using Approximations

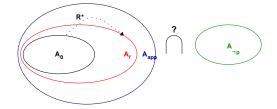


イロト イヨト イヨト イ

3.1

Some details about Rewriting Approximations Characterization of Conclusive Approximations Conclusion

Verifying a System Σ using Approximations

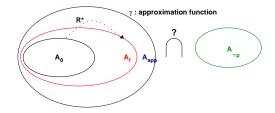


• Computation of an automaton $\mathcal{A}_{app} : \mathcal{L}(\mathcal{A}_{f}) \subseteq \mathcal{L}(\mathcal{A}_{app})$

E >

Some details about Rewriting Approximations Characterization of Conclusive Approximations Conclusion

Verifying a System Σ using Approximations

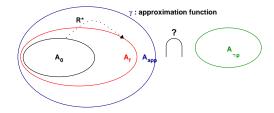


- Computation of an automaton \mathcal{A}_{app} : $\mathcal{L}(\mathcal{A}_{f}) \subseteq \mathcal{L}(\mathcal{A}_{app})$
- Fine grained approximation functions for precise approximations

• • • • • • • • • • • • •

Some details about Rewriting Approximations Characterization of Conclusive Approximations Conclusion

Verifying a System $\boldsymbol{\Sigma}$ using Approximations



- Computation of an automaton \mathcal{A}_{app} : $\mathcal{L}(\mathcal{A}_{f}) \subseteq \mathcal{L}(\mathcal{A}_{app})$
- Fine grained approximation functions for precise approximations
- High level Expertise is required

・ロト ・ 同ト ・ ヨト ・ ヨト

To summarize

• Verification of Σ can be done via computation of **rewriting** approximations

イロト イポト イヨト イヨト

э.

To summarize

- Verification of Σ can be done via computation of rewriting approximations
- High level expertise is required for conclusive approximations

イロト イボト イヨト イヨト

To summarize

- Verification of $\boldsymbol{\Sigma}$ can be done via computation of rewriting approximations
- High level expertise is required for conclusive approximations
- Question : Can we kick out these expertise?

イロト イボト イヨト イヨト

To summarize

- Verification of $\boldsymbol{\Sigma}$ can be done via computation of rewriting approximations
- High level expertise is required for conclusive approximations
- Question : Can we kick out these expertise?
- First and naive answer : YES WE CAN...

イロト イボト イヨト イヨト

To summarize

- Verification of $\boldsymbol{\Sigma}$ can be done via computation of rewriting approximations
- High level expertise is required for conclusive approximations
- Question : Can we kick out these expertise?
- First and naive answer : YES WE CAN... Exhaustive exploration of the computable automata is sufficient...

イロト イポト イヨト イヨト

э.

To summarize

- Verification of $\boldsymbol{\Sigma}$ can be done via computation of rewriting approximations
- High level expertise is required for conclusive approximations
- Question : Can we kick out these expertise?
- First and naive answer : YES WE CAN... **Exhaustive exploration** of the computable automata is sufficient...but intractable

イロト イボト イヨト イヨト

To summarize

- Verification of Σ can be done via computation of rewriting approximations
- High level expertise is required for conclusive approximations
- Question : Can we kick out these expertise?
- First and naive answer : YES WE CAN... **Exhaustive exploration** of the computable automata is sufficient...but intractable
- Second and more intricate answer :

イロト イボト イヨト イヨト

To summarize

- Verification of $\boldsymbol{\Sigma}$ can be done via computation of rewriting approximations
- High level expertise is required for conclusive approximations
- Question : Can we kick out these expertise?
- First and naive answer : YES WE CAN... **Exhaustive exploration** of the computable automata is sufficient...but intractable
- Second and more intricate answer : characterize conclusive approximations by logical formulae and solve them

イロト イポト イヨト イヨト

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Contents

- 2 Some details about Rewriting Approximations
 - Tree Automata
 - Tree Automata & Patterns
 - *R*-closed Tree Automata = Rewriting Approximations
- 3 Characterization of Conclusive Approximations
 - Tree automata with Variables as States
 - Characterization of Conclusive Rewriting Approximations

4 Conclusion

イロト イポト イヨト イヨト

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

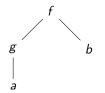
Example
$$\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$$
 with
 $\Sigma = \{a : 0, b : 0, g : 1, f : 2\}$
 $\mathcal{Q} = \{q_1, q_2, q_3, q_f\}, \mathcal{F} = \{q_f\}$
 $\delta = \{a \rightarrow q_1$
 $g(q_1) \rightarrow q_2$
 $b \rightarrow q_3$
 $f(q_2, q_3) \rightarrow q_f \}$

イロト イポト イヨト イヨト

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example
$$\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$$
 with
 $\Sigma = \{a : 0, b : 0, g : 1, f : 2\}$
 $\mathcal{Q} = \{q_1, q_2, q_3, q_f\}, \mathcal{F} = \{q_f\}$
 $\delta = \{a \rightarrow q_1$
 $g(q_1) \rightarrow q_2$
 $b \rightarrow q_3$
 $f(q_2, q_3) \rightarrow q_f \}$

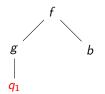


イロト イポト イヨト イヨト

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example
$$\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$$
 with
 $\Sigma = \{a : 0, b : 0, g : 1, f : 2\}$
 $\mathcal{Q} = \{q_1, q_2, q_3, q_f\}, \mathcal{F} = \{q_f\}$
 $\delta = \{ \begin{array}{c} a \rightarrow q_1 \\ g(q_1) \rightarrow q_2 \\ b \rightarrow q_3 \\ f(q_2, q_3) \rightarrow q_f \end{array} \}$



イロト イ理ト イヨト イヨト

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example
$$\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$$
 with
 $\Sigma = \{a : 0, b : 0, g : 1, f : 2\}$
 $\mathcal{Q} = \{q_1, q_2, q_3, q_f\}, \mathcal{F} = \{q_f\}$
 $\delta = \{a \rightarrow q_1$
 $g(q_1) \rightarrow q_2$
 $b \rightarrow q_3$
 $f(q_2, q_3) \rightarrow q_f \}$

イロト イ理ト イヨト イヨト

3

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example
$$\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$$
 with
 $\Sigma = \{a : 0, b : 0, g : 1, f : 2\}$
 $\mathcal{Q} = \{q_1, q_2, q_3, q_f\}, \mathcal{F} = \{q_f\}$
 $\delta = \{a \rightarrow q_1$
 $g(q_1) \rightarrow q_2$
 $b \rightarrow q_3$
 $f(q_2, q_3) \rightarrow q_f \}$

イロト イ理ト イヨト イヨト

3

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example
$$\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$$
 with
 $\Sigma = \{a : 0, b : 0, g : 1, f : 2\}$
 $\mathcal{Q} = \{q_1, q_2, q_3, q_f\}, \mathcal{F} = \{q_f\}$
 $\delta = \{a \rightarrow q_1$
 $g(q_1) \rightarrow q_2$
 $b \rightarrow q_3$
 $f(q_2, q_3) \rightarrow q_f\}$

 q_f

イロト イポト イヨト イヨト

э

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example
$$\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$$
 with
 $\Sigma = \{a : 0, b : 0, g : 1, f : 2\}$
 $\mathcal{Q} = \{q_1, q_2, q_3, q_f\}, \mathcal{F} = \{q_f\}$
 $\delta = \{a \rightarrow q_1$
 $g(q_1) \rightarrow q_2$
 $b \rightarrow q_3$
 $f(q_2, q_3) \rightarrow q_f \}$

 q_f

イロト イポト イラト イラト

 $f(g(a), b) \rightarrow^*_{\mathcal{A}} q_f$

 $\begin{array}{l} \mbox{Tree Automata} \\ \mbox{Tree Automata & Patterns} \\ \mbox{\mathcal{R}-closed Tree Automata = Rewriting Approximations} \end{array}$

Tree Automaton and Term Recognition

Example
$$\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$$
 with
 $\Sigma = \{a: 0, b: 0, g: 1, f: 2\}$
 $\mathcal{Q} = \{q_1, q_2, q_3, q_f\}, \mathcal{F} = \{q_f\}$
 $\delta = \{a \rightarrow q_1$
 $g(q_1) \rightarrow q_2$
 $b \rightarrow q_3$
 $f(q_2, q_3) \rightarrow q_f \}$

 q_f

 $f(g(a), b) \rightarrow^*_{\mathcal{A}} q_f$

Language of \mathcal{A} $\mathcal{L}(\mathcal{A}) = \{t | t \rightarrow^*_{\mathcal{A}} q_f \land q_f \in F\}$ $\mathcal{L}(\mathcal{A}, q) = \{t | t \rightarrow^*_{\mathcal{A}} q\}$

Tree Automata **Tree Automata & Patterns** \mathcal{R} -closed Tree Automata = Rewriting Approximations

Does a Pattern have a Solution in \mathcal{A} ?

Given a term t containing variables and A, a solution of t on the state q ∈ Q is a substitution σ : X → Q such that

$$t\sigma \rightarrow^*_{\mathcal{A}} q$$

イロト イボト イヨト イヨト

Tree Automata **Tree Automata & Patterns** \mathcal{R} -closed Tree Automata = Rewriting Approximations

Does a Pattern have a Solution in \mathcal{A} ?

Given a term t containing variables and A, a solution of t on the state q ∈ Q is a substitution σ : X → Q such that

$$t\sigma \rightarrow^*_{\mathcal{A}} q$$

Example :
$$t = f(g(x), b)$$
 and
 $\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$ with
 $\delta = \{ a \to q_1 \\ g(q_1) \to q_2 \\ b \to q_3 \\ f(q_2, q_3) \to q_f \}$

イロト イボト イヨト イヨト

Tree Automata **Tree Automata & Patterns** \mathcal{R} -closed Tree Automata = Rewriting Approximations

Does a Pattern have a Solution in \mathcal{A} ?

Given a term t containing variables and A, a solution of t on the state q ∈ Q is a substitution σ : X → Q such that

Example :
$$t = f(g(x), b)$$
 and
 $\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$ with
 $\delta = \{ a \to q_1 \\ g(q_1) \to q_2 \\ b \to q_3 \\ f(q_2, q_3) \to q_f \}$

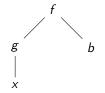


Image: A matrix and a matrix

$$\sigma = \{x \mapsto q_1\}$$
 is a solution of t
on q_f

$$t\sigma \rightarrow^*_{\mathcal{A}} q$$

Tree Automata **Tree Automata & Patterns** \mathcal{R} -closed Tree Automata = Rewriting Approximations

Does a Pattern have a Solution in \mathcal{A} ?

Given a term t containing variables and A, a solution of t on the state q ∈ Q is a substitution σ : X → Q such that

 $t\sigma \rightarrow^*_{\Delta} q$

Example :
$$t = f(g(x), b)$$
 and
 $\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$ with
 $\delta = \{ a \to q_1 \\ g(q_1) \to q_2 \\ b \to q_3 \\ f(q_2, q_3) \to q_f \}$

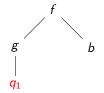


Image: A matrix and a matrix

E >

$$\sigma = \{x \mapsto q_1\}$$
 is a solution of t on q_f

Tree Automata **Tree Automata & Patterns** \mathcal{R} -closed Tree Automata = Rewriting Approximations

Does a Pattern have a Solution in \mathcal{A} ?

Given a term t containing variables and A, a solution of t on the state q ∈ Q is a substitution σ : X → Q such that

Example :
$$t = f(g(x), b)$$
 and
 $\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$ with
 $\delta = \{ a \to q_1 \\ g(q_1) \to q_2 \\ b \to q_3 \\ f(q_2, q_3) \to q_f \}$

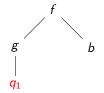


Image: A matrix and a matrix

$t\sigma ightarrow^*_{\mathcal{A}} q$

$$\sigma = \{x \mapsto q_1\}$$
 is a solution of t on q_f

Tree Automata **Tree Automata & Patterns** \mathcal{R} -closed Tree Automata = Rewriting Approximations

Does a Pattern have a Solution in \mathcal{A} ?

Given a term t containing variables and A, a solution of t on the state q ∈ Q is a substitution σ : X → Q such that

Example :
$$t = f(g(x), b)$$
 and
 $\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$ with
 $\delta = \{ a \to q_1 \\ g(q_1) \to q_2 \\ b \to q_3 \\ f(q_2, q_3) \to q_f \}$

An example of solution

$$\sigma = \{ x \mapsto q_1 \}$$
 is a solution of t on q_f

Image: A matrix and a matrix

$$t\sigma
ightarrow^*_{\mathcal{A}} q$$

Tree Automata **Tree Automata & Patterns** \mathcal{R} -closed Tree Automata = Rewriting Approximations

Does a Pattern have a Solution in \mathcal{A} ?

Given a term t containing variables and A, a solution of t on the state q ∈ Q is a substitution σ : X → Q such that

 $t\sigma \rightarrow^*_{\Delta} q$

Example :
$$t = f(g(x), b)$$
 and
 $\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$ with
 $\delta = \{ a \rightarrow q_1 \\ g(q_1) \rightarrow q_2 \\ b \rightarrow q_3 \\ f(q_2, q_3) \rightarrow q_f \}$

An example of solution

$$\sigma = \{ x \mapsto q_1 \}$$
 is a solution of t on q_f

Image: A matrix and a matrix

E >

Tree Automata **Tree Automata & Patterns** \mathcal{R} -closed Tree Automata = Rewriting Approximations

Does a Pattern have a Solution in \mathcal{A} ?

Given a term t containing variables and A, a solution of t on the state q ∈ Q is a substitution σ : X → Q such that

Example :
$$t = f(g(x), b)$$
 and
 $\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$ with
 $\delta = \{ a \rightarrow q_1 \\ g(q_1) \rightarrow q_2 \\ b \rightarrow q_3 \\ f(q_2, q_3) \rightarrow q_f \}$

An example of solution

$$\sigma = \{ x \mapsto q_1 \}$$
 is a solution of t on q_f

 $t\sigma \rightarrow^*_{\mathcal{A}} q$

 q_f

Tree Automata **Tree Automata & Patterns** \mathcal{R} -closed Tree Automata = Rewriting Approximations

qf

イロト イポト イヨト イ

Does a Pattern have a Solution in \mathcal{A} ?

Given a term t containing variables and A, a solution of t on the state q ∈ Q is a substitution σ : X → Q such that

Example :
$$t = f(g(x), b)$$
 and
 $\mathcal{A} = \langle \mathcal{Q}, \Sigma, \mathcal{F}, \delta \rangle$ with
 $\delta = \{ a \rightarrow q_1 \\ g(q_1) \rightarrow q_2 \\ b \rightarrow q_3 \\ f(q_2, q_3) \rightarrow q_f \}$

 $t\sigma \rightarrow^*_{\mathcal{A}} q$

 $f(g(q_1), b) \rightarrow^*_{\mathcal{A}} q_f$

$$\sigma = \{x \mapsto q_1\}$$
 is a solution of t on q_f

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Rewriting Approximations

Inputs

- \mathcal{A}_0 : an initial tree automaton
- \mathcal{A} : an automaton such that $\mathcal{A}_0 \subseteq \mathcal{A}$
- \mathcal{R} : a set of rewrite rules $I \rightarrow r$

イロト イポト イヨト イヨト

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Rewriting Approximations

Inputs

- \mathcal{A}_0 : an initial tree automaton
- $\bullet~\mathcal{A}$: an automaton such that $\mathcal{A}_0\subseteq \mathcal{A}$
- \mathcal{R} : a set of rewrite rules $I \rightarrow r$

If for any $l {
ightarrow} r \in \mathcal{R}$, any q of \mathcal{A} one has

any solution σ of l on the state $q \Rightarrow \sigma$ is a solution of r on q

then

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Rewriting Approximations

Inputs

- \mathcal{A}_0 : an initial tree automaton
- $\bullet~\mathcal{A}$: an automaton such that $\mathcal{A}_0\subseteq \mathcal{A}$
- \mathcal{R} : a set of rewrite rules $I \rightarrow r$

If for any $l{
ightarrow} r \in \mathcal{R}$, any q of \mathcal{A} one has

any solution σ of l on the state $q \Rightarrow \sigma$ is a solution of r on q

then

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Rewriting Approximations

Inputs

- \mathcal{A}_0 : an initial tree automaton
- $\bullet~\mathcal{A}$: an automaton such that $\mathcal{A}_0\subseteq \mathcal{A}$
- \mathcal{R} : a set of rewrite rules $I \rightarrow r$

If for any $l{
ightarrow} r \in \mathcal{R}$, any q of \mathcal{A} one has

any solution σ of l on the state $q \Rightarrow \sigma$ is a solution of r on q

then

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Rewriting Approximations

Inputs

- \mathcal{A}_0 : an initial tree automaton
- $\bullet~\mathcal{A}$: an automaton such that $\mathcal{A}_0\subseteq \mathcal{A}$
- \mathcal{R} : a set of rewrite rules $I \rightarrow r$

If for any $l {
ightarrow} r \in \mathcal{R}$, any q of \mathcal{A} one has

any solution σ of l on the state $q \Rightarrow \sigma$ is a solution of r on q

then

$$\mathcal{R}(\mathcal{L}(\mathcal{A})) \subseteq \mathcal{L}(\mathcal{A}) \; (\mathcal{A} \; \textit{is} \; \mathcal{R} - \textit{closed})$$

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Rewriting Approximations

Inputs

- \mathcal{A}_0 : an initial tree automaton
- $\bullet~\mathcal{A}$: an automaton such that $\mathcal{A}_0\subseteq \mathcal{A}$
- \mathcal{R} : a set of rewrite rules $I \rightarrow r$

If for any $l {
ightarrow} r \in \mathcal{R}$, any q of \mathcal{A} one has

any solution σ of l on the state $q \Rightarrow \sigma$ is a solution of r on q

then

$$\mathcal{R}(\mathcal{L}(\mathcal{A})) \subseteq \mathcal{L}(\mathcal{A}) \ (\mathcal{A} \ \textit{is} \ \mathcal{R} - \textit{closed})$$

In other words

$$\mathcal{R}^*(\mathcal{L}(\mathcal{A}_0)) \subseteq \mathcal{L}(\mathcal{A})$$

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Rewriting Approximations

Inputs

- \mathcal{A}_0 : an initial tree automaton
- $\bullet~\mathcal{A}$: an automaton such that $\mathcal{A}_0\subseteq \mathcal{A}$
- \mathcal{R} : a set of rewrite rules $I \rightarrow r$

If for any $l {
ightarrow} r \in \mathcal{R}$, any q of \mathcal{A} one has

any solution σ of l on the state $q \Rightarrow \sigma$ is a solution of r on q

then

$$\mathcal{R}(\mathcal{L}(\mathcal{A})) \subseteq \mathcal{L}(\mathcal{A}) \ (\mathcal{A} \ \textit{is} \ \mathcal{R} - \textit{closed})$$

In other words

$$\mathcal{R}^*(\mathcal{L}(\mathcal{A}_0)) \subseteq \mathcal{L}(\mathcal{A})$$

Given \mathcal{A}_0 and \mathcal{R} , \mathcal{A} is an $(\mathcal{A}_0, \mathcal{R})$ over-approximation

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Example of Rewriting Approximation

Inputs

•
$$\mathcal{A}_0 = \langle \{q_f, q_a\}, \{f : 1, s : 1, a : 0\}, \{q_f\}, \{a \to q_a, f(q_a) \to q_f\} \rangle$$

• $\mathcal{A}_f = \langle \{q_f, q_a\}, \{f : 1, s : 1, a : 0\}, \{q_f\}, \Delta_f \rangle$ with
 $\Delta_f = \{a \to q_a, f(q_a) \to q_f, s(q_a) \to q_a\}$

•
$$\mathcal{R} = \{f(x) \rightarrow f(s(s(x)))\}$$

イロト イポト イヨト イヨト

-

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Example of Rewriting Approximation

Inputs

•
$$\mathcal{A}_0 = \langle \{q_f, q_a\}, \{f : 1, s : 1, a : 0\}, \{q_f\}, \{a \rightarrow q_a, f(q_a) \rightarrow q_f\} \rangle$$

• $\mathcal{A}_f = \langle \{q_f, q_a\}, \{f : 1, s : 1, a : 0\}, \{q_f\}, \Delta_f \rangle$ with
 $\Delta_f = \{a \rightarrow q_a, f(q_a) \rightarrow q_f, s(q_a) \rightarrow q_a\}$
• $\mathcal{R} = \{f(x) \rightarrow f(s(s(x)))\}$

 $\sigma = \{x \rightarrow q_a\}$ is the unique solution of f(x) on q_f and σ is also a solution for f(s(s(x)))

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Example of Rewriting Approximation

Inputs

•
$$\mathcal{A}_0 = \langle \{q_f, q_a\}, \{f : 1, s : 1, a : 0\}, \{q_f\}, \{a \to q_a, f(q_a) \to q_f\} \rangle$$

• $\mathcal{A}_f = \langle \{q_f, q_a\}, \{f : 1, s : 1, a : 0\}, \{q_f\}, \Delta_f \rangle$ with
 $\Delta_f = \{a \to q_a, f(q_a) \to q_f, s(q_a) \to q_a\}$
• $\mathcal{R} = \{f(x) \to f(s(s(x)))\}$

 $\sigma = \{x \rightarrow q_a\}$ is the unique solution of f(x) on q_f and σ is also a solution for f(s(s(x)))

$$f(a) \rightarrow_{\mathcal{R}} f(s(s(a))) \rightarrow f(s^{4}(a)) \dots$$

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Example of Rewriting Approximation

Inputs

•
$$\mathcal{A}_0 = \langle \{q_f, q_a\}, \{f : 1, s : 1, a : 0\}, \{q_f\}, \{a \to q_a, f(q_a) \to q_f\} \rangle$$

• $\mathcal{A}_f = \langle \{q_f, q_a\}, \{f : 1, s : 1, a : 0\}, \{q_f\}, \Delta_f \rangle$ with
 $\Delta_f = \{a \to q_a, f(q_a) \to q_f, s(q_a) \to q_a\}$
• $\mathcal{R} = \{f(x) \to f(s(s(x)))\}$

 $\sigma = \{x \rightarrow q_a\}$ is the unique solution of f(x) on q_f and σ is also a solution for f(s(s(x)))

$$f(a) \rightarrow_{\mathcal{R}} f(s(s(a))) \rightarrow f(s^4(a)) \dots$$

$$\mathcal{R}^*(\mathcal{L}(\mathcal{A}_0)) = \{f(s^{(2n)}(a))|n \in \mathbb{N}\}$$

Tree Automata Tree Automata & Patterns \mathcal{R} -closed Tree Automata = Rewriting Approximations

Example of Rewriting Approximation

Inputs

•
$$\mathcal{A}_0 = \langle \{q_f, q_a\}, \{f : 1, s : 1, a : 0\}, \{q_f\}, \{a \to q_a, f(q_a) \to q_f\} \rangle$$

• $\mathcal{A}_f = \langle \{q_f, q_a\}, \{f : 1, s : 1, a : 0\}, \{q_f\}, \Delta_f \rangle$ with
 $\Delta_f = \{a \to q_a, f(q_a) \to q_f, s(q_a) \to q_a\}$
• $\mathcal{R} = \{f(x) \to f(s(s(x)))\}$

 $\sigma = \{x \rightarrow q_a\}$ is the unique solution of f(x) on q_f and σ is also a solution for f(s(s(x)))

$$f(a) \rightarrow_{\mathcal{R}} f(s(s(a))) \rightarrow f(s^4(a)) \dots$$

 $\mathcal{R}^*(\mathcal{L}(\mathcal{A}_0)) = \{f(s^{(2n)}(a)) | n \in \mathbb{N}\} \text{ and } \mathcal{L}(\mathcal{A}) = \{f(s^n(a) | n \in \mathbb{N}\}\}$

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Contents

- 2 Some details about Rewriting Approximations
 - Tree Automata
 - Tree Automata & Patterns
 - *R*-closed Tree Automata = Rewriting Approximations
- Observation of Conclusive Approximations
 - Tree automata with Variables as States
 - Characterization of Conclusive Rewriting Approximations

4 Conclusion

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Symbolic Tree Automata

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae

イロト イポト イヨト イヨト

э

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Symbolic Tree Automata

 $\begin{aligned} \mathcal{A}_{\mathcal{S}} &= \{ \quad \begin{array}{l} a \rightarrow X_1 \\ f(X_2) \rightarrow X_0 \\ s(X_1) \rightarrow X_2 \end{aligned}$

イロト イポト イヨト イヨト

э

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Symbolic Tree Automata

$$\mathcal{A}_{\mathcal{S}} = \{ egin{array}{c} a o X_1 \ f(X_2) o X_0 \ s(X_1) o X_2 \end{array}$$

$$\iota = \{ X_0 \mapsto q_f, \\ X_1 \mapsto q_a, \\ X_2 \mapsto q_{s(a)} \}$$

イロト イポト イヨト イヨト

э

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

 $\mathcal{A}_{\mathcal{S}} = \{ a \to X_1 \}$

Symbolic Tree Automata

 $\mathcal{A} = \{ \begin{array}{ccc} a \to q_a & f(X_2) \to X_0 \\ f(q_{s(a)}) \to q_f & s(X_1) \to X_2 \\ s(q_a) \to q_{s(a)} \end{array} \} \qquad \qquad \iota = \{ \begin{array}{ccc} X_0 \mapsto q_f, \\ X_1 \mapsto q_a, \\ X_2 \mapsto q_{s(a)} \end{array} \}$

Proposition

Let \mathcal{A}_{S} be an STA. If $\mathcal{A} \subseteq \mathcal{A}_{S}$ modulo renaming then

 $\forall \iota.\mathcal{L}(\mathcal{A}) \subseteq \mathcal{L}(\mathcal{A}_{\mathcal{S}}\iota)$

▲ロ▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ニヨー のなべ

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

 $f(s(a)) \xrightarrow{\phi} X_0$

イロト イポト イヨト イヨト

э

}

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

 $f(s(a)) \xrightarrow{\phi} X_0$

$$egin{aligned} \mathcal{A}_{\mathcal{S}} &= \{ & a o X_1 \ & f(X_2) o X_0 \ & s(X_1) o X_2 \ & s(X_3) o X_4 \ & s(X_5) o X_6 \end{aligned}$$

イロト イポト イヨト イヨト

э

}

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

$$f(s(a)) \xrightarrow{\phi} X_0$$

$$f(s(a)) \xrightarrow{\phi} X_0 \quad \text{if} \quad s(a) \xrightarrow{\phi_1} X_2$$

and $\phi = \phi_1 \land X_0 = X_0$

$$egin{aligned} \mathcal{A}_{\mathcal{S}} &= \{ & a o X_1 \ & f(X_2) o X_0 \ & s(X_1) o X_2 \ & s(X_3) o X_4 \ & s(X_5) o X_6 \end{aligned}$$

イロト イポト イヨト イヨト

}

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

$$f(s(a)) \stackrel{\phi}{\to} X_0$$

$$f(s(a)) \stackrel{\phi}{\to} X_0 \quad \text{if} \quad s(a) \stackrel{\phi_1}{\to} X_2$$

and $\phi = \phi_1 \land X_0 = X_0$

$$\mathcal{A}_{\mathcal{S}} = \{ \begin{array}{c} a \to X_1 \\ f(X_2) \to X_0 \\ s(X_1) \to X_2 \\ s(X_3) \to X_4 \\ s(X_5) \to X_6 \end{array}$$

イロト 不得下 不良下 不良下

}

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

$$f(s(a)) \xrightarrow{\phi} X_{0}$$

$$f(s(a)) \xrightarrow{\phi} X_{0} \quad \text{if} \quad s(a) \xrightarrow{\phi_{1}} X_{2}$$

$$and \phi = \phi_{1} \land X_{0} = X_{0}$$

$$s(a) \xrightarrow{\phi_{1}} X_{2} \quad \text{if} \quad a \xrightarrow{\phi_{2}} X_{1} \text{ and}$$

$$\phi_{1} = \phi_{2} \land X_{2} = X_{2}$$

$$\mathcal{A}_{\mathcal{S}} = \{ \begin{array}{c} a \to X_1 \\ f(X_2) \to X_0 \\ s(X_1) \to X_2 \\ s(X_3) \to X_4 \\ s(X_5) \to X_6 \end{array}$$

イロト イポト イヨト イヨト

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

$$f(s(a)) \xrightarrow{\phi} X_{0}$$

$$f(s(a)) \xrightarrow{\phi} X_{0} \quad \text{if} \quad s(a) \xrightarrow{\phi_{1}} X_{2}$$

$$and \phi = \phi_{1} \land X_{0} = X_{0}$$

$$s(a) \xrightarrow{\phi_{1}} X_{2} \quad \text{if} \quad a \xrightarrow{\phi_{2}} X_{1} \text{ and}$$

$$\phi_{1} = \phi_{2} \land X_{2} = X_{2}$$

$$\mathcal{A}_{\mathcal{S}} = \{ \begin{array}{c} a \to X_1 \\ f(X_2) \to X_0 \\ s(X_1) \to X_2 \\ s(X_3) \to X_4 \\ s(X_5) \to X_6 \end{array} \}$$

イロト 不得下 不良下 不良下

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

$$f(s(a)) \stackrel{\phi}{\rightarrow} X_{0}$$

$$f(s(a)) \stackrel{\phi}{\rightarrow} X_{0} \quad \text{if} \quad s(a) \stackrel{\phi_{1}}{\rightarrow} X_{2}$$

$$and \phi = \phi_{1} \land X_{0} = X_{0}$$

$$s(a) \stackrel{\phi_{1}}{\rightarrow} X_{2} \quad \text{if} \quad a \stackrel{\phi_{2}}{\rightarrow} X_{1} \text{ and}$$

$$\phi_{1} = \phi_{2} \land X_{2} = X_{2}$$

$$f(X_{2}) \rightarrow X_{0}$$

$$s(X_{1}) \rightarrow X_{2}$$

$$s(X_{3}) \rightarrow X_{4}$$

$$s(X_{5}) \rightarrow X_{6}$$

$$f(s(a)) \stackrel{\phi}{\rightarrow} X_{0} \quad \text{if} \quad s(a) \stackrel{\phi_{1}}{\rightarrow} X_{2}$$

$$\phi_{1} = \phi_{3} \land X_{4} = X_{2}$$

$$OR$$

$$OR$$

イロト 不得下 不良下 不良下

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

$$f(s(a)) \xrightarrow{\phi} X_{0}$$

$$f(s(a)) \xrightarrow{\phi} X_{0} \quad \text{if} \quad s(a) \xrightarrow{\phi_{1}} X_{2}$$

$$and \phi = \phi_{1} \land X_{0} = X_{0}$$

$$s(a) \xrightarrow{\phi_{1}} X_{2} \quad \text{if} \quad a \xrightarrow{\phi_{2}} X_{1} \text{ and}$$

$$\mathcal{A}_{S} = \{ a \rightarrow X_{1} \quad \phi_{1} = \phi_{2} \land X_{2} = X_{2}$$

$$f(X_{2}) \rightarrow X_{0} \quad \phi_{1} = \phi_{3} \land X_{4} = X_{2}$$

$$s(X_{3}) \rightarrow X_{4} \quad \phi_{1} = \phi_{3} \land X_{4} = X_{2}$$

$$OR \quad \phi_{1} = \phi_{3} \land X_{4} = X_{2}$$

$$OR \quad \phi_{1} = \phi_{3} \land X_{4} = X_{2}$$

$$OR \quad \phi_{1} = \phi_{3} \land X_{4} = X_{2}$$

$$OR \quad \phi_{1} = \phi_{3} \land X_{4} = X_{2}$$

$$GR \quad \phi_{1} = \phi_{3} \land X_{4} = X_{2}$$

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae

イロト 不得下 不良下 不良下

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

$$f(s(a)) \stackrel{\phi}{\rightarrow} X_{0}$$

$$f(s(a)) \stackrel{\phi}{\rightarrow} X_{0} \quad \text{if} \quad s(a) \stackrel{\phi_{1}}{\rightarrow} X_{2}$$

$$and \phi = \phi_{1} \land X_{0} = X_{0}$$

$$s(a) \stackrel{\phi_{1}}{\rightarrow} X_{2} \quad \text{if} \quad a \stackrel{\phi_{2}}{\rightarrow} X_{1} \text{ and}$$

$$\phi_{1} = \phi_{2} \land X_{2} = X_{2}$$

$$f(X_{2}) \rightarrow X_{0}$$

$$s(X_{1}) \rightarrow X_{2}$$

$$s(X_{3}) \rightarrow X_{4}$$

$$s(X_{5}) \rightarrow X_{6} \quad \}$$

$$(a \stackrel{\phi_{4}}{\rightarrow} X_{5} \text{ AND}$$

$$\phi_{1} = \phi_{4} \land X_{6} = X_{2})$$

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae

イロト イポト イヨト イヨト

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

$$f(s(a)) \xrightarrow{\phi} X_{0}$$

$$f(s(a)) \xrightarrow{\phi} X_{0} \quad \text{if} \quad s(a) \xrightarrow{\phi_{1}} X_{2}$$

$$and \phi = \phi_{1} \land X_{0} = X_{0}$$

$$s(a) \xrightarrow{\phi_{1}} X_{2} \quad \text{if} \quad a \xrightarrow{\phi_{2}} X_{1} \text{ and}$$

$$\phi_{1} = \phi_{2} \land X_{2} = X_{2}$$

$$f(X_{2}) \rightarrow X_{0}$$

$$s(X_{1}) \rightarrow X_{2}$$

$$s(X_{3}) \rightarrow X_{4}$$

$$s(X_{5}) \rightarrow X_{6} \quad \}$$

$$G(a \xrightarrow{\phi_{4}} X_{5} \text{ AND}$$

$$\phi_{1} = \phi_{4} \land X_{6} = X_{2}$$

イロト 不得下 不良下 不良下

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

$$f(s(a)) \stackrel{\phi}{\rightarrow} X_{0}$$

$$f(s(a)) \stackrel{\phi}{\rightarrow} X_{0} \quad \text{if} \quad s(a) \stackrel{\phi_{1}}{\rightarrow} X_{2}$$

$$and \phi = \phi_{1} \land X_{0} = X_{0}$$

$$s(a) \stackrel{\phi_{1}}{\rightarrow} X_{2} \quad \text{if} \quad a \stackrel{\phi_{2}}{\rightarrow} X_{1} \text{ and}$$

$$\phi_{1} = \phi_{2} \land X_{2} = X_{2}$$

$$f(X_{2}) \rightarrow X_{0}$$

$$s(X_{1}) \rightarrow X_{2}$$

$$s(X_{3}) \rightarrow X_{4}$$

$$s(X_{5}) \rightarrow X_{6} \quad \}$$

$$(a \stackrel{\phi_{2}}{\rightarrow} X_{5} \text{ AND}$$

$$\phi_{1} = \phi_{4} \land X_{6} = X_{2})$$

$$a \stackrel{\phi_{2}}{\rightarrow} X_{1} \quad \text{if} \quad \phi_{2} = (X_{1} = X_{1})$$

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae

イロト 不得下 不良下 不良下

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

$$f(s(a)) \xrightarrow{\phi} X_{0}$$

$$f(s(a)) \xrightarrow{\phi} X_{0} \quad \text{if} \quad s(a) \xrightarrow{\phi_{1}} X_{2}$$

$$and \phi = \phi_{1} \land X_{0} = X_{0}$$

$$s(a) \xrightarrow{\phi_{1}} X_{2} \quad \text{if} \quad a \xrightarrow{\phi_{2}} X_{1} \text{ and}$$

$$\phi_{1} = \phi_{2} \land X_{2} = X_{2}$$

$$f(X_{2}) \rightarrow X_{0}$$

$$s(X_{1}) \rightarrow X_{2}$$

$$s(X_{3}) \rightarrow X_{4}$$

$$s(X_{5}) \rightarrow X_{6} \quad \}$$

$$a \xrightarrow{\phi_{2}} X_{1} \quad \text{if} \quad \phi_{2} = (X_{1} = X_{1})$$

$$a \xrightarrow{\phi_{3}} X_{3} \quad \text{if} \quad \phi_{3} = (X_{1} = X_{3})$$

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae

イロト 不得下 不良下 不良下

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

$$f(s(a)) \stackrel{\phi}{\rightarrow} X_{0}$$

$$f(s(a)) \stackrel{\phi}{\rightarrow} X_{0} \quad \text{if} \quad s(a) \stackrel{\phi_{1}}{\rightarrow} X_{2} \\ \text{and } \phi = \phi_{1} \land X_{0} = X_{0}$$

$$s(a) \stackrel{\phi_{1}}{\rightarrow} X_{2} \quad \text{if} \quad a \stackrel{\phi_{2}}{\rightarrow} X_{1} \text{ and} \\ \phi_{1} = \phi_{2} \land X_{2} = X_{2}$$

$$f(X_{2}) \rightarrow X_{0} \quad S(X_{1}) \rightarrow X_{2} \\ s(X_{3}) \rightarrow X_{4} \quad S(X_{5}) \rightarrow X_{6} \quad \} \quad OR \quad (a \stackrel{\phi_{4}}{\rightarrow} X_{5} \text{ AND} \\ \phi_{1} = \phi_{4} \land X_{6} = X_{2})$$

$$a \stackrel{\phi_{2}}{\rightarrow} X_{1} \quad \text{if} \quad \phi_{2} = (X_{1} = X_{1}) \\ a \stackrel{\phi_{3}}{\rightarrow} X_{3} \quad \text{if} \quad \phi_{3} = (X_{1} = X_{3}) \\ a \stackrel{\phi_{4}}{\rightarrow} X_{5} \quad \text{if} \quad \phi_{4} = (X_{1} = X_{5})$$

Y. Boichut, B. Dao and V. Murat

Characterizing Conclusive Approximations by Logical Formulae

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

To summarize,

 $f(s(a)) \xrightarrow{\phi} X_0 \text{ with}$ $\phi = X_0 = X_0 \land (X_2 = X_2 \lor (X_4 = X_2 \land X_3 = X_1) \lor (X_6 = X_2 \land X_5 = X_1))$

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Reduction seen as Formula

To summarize,

 $f(s(a)) \stackrel{\phi}{\to} X_0 \text{ with}$ $\phi = X_0 = X_0 \land (X_2 = X_2 \lor (X_4 = X_2 \land X_3 = X_1) \lor (X_6 = X_2 \land X_5 = X_1))$

More generally, $t \xrightarrow{\phi}_{\mathcal{A}} X$ denotes the condition under which t can be recognized into X

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Generalization to Recognition

Definition $(Reco_{\mathcal{A}_{\boldsymbol{s}}}(t,X))$

Let \mathcal{A}_S be an STA such that $\mathcal{A}_S = \langle \mathcal{X}, \Sigma, \mathcal{X}_F, \Delta \rangle$ and *t* be a term without variables.

$$Reco_{\mathcal{A}_{\boldsymbol{s}}}(t,X) = \bigvee_{Y \in \mathcal{X}, t \stackrel{\phi}{\to} Y} \phi \land X = Y$$

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Generalization to Recognition

Definition $(Reco_{\mathcal{A}_{\boldsymbol{s}}}(t,X))$

Let \mathcal{A}_S be an STA such that $\mathcal{A}_S = \langle \mathcal{X}, \Sigma, \mathcal{X}_F, \Delta \rangle$ and *t* be a term without variables.

$$Reco_{\mathcal{A}_{\mathcal{S}}}(t,X) = \bigvee_{Y \in \mathcal{X}, t \stackrel{\phi}{\to} Y} \phi \land X = Y$$

Definition $(Reco_{\mathcal{A}s}(t))$

Let \mathcal{A}_S be an STA such that $\mathcal{A}_S = \langle \mathcal{X}, \Sigma, \mathcal{X}_F, \Delta \rangle$ and *t* be a term without variables.

$$Reco_{\mathcal{A}_{\boldsymbol{s}}}(t) = \bigvee_{X \in \mathcal{X}_{\boldsymbol{F}}} Reco_{\mathcal{A}_{\boldsymbol{s}}}(t,X)$$

Characterizing Conclusive Approximations by Logical Formulae

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Generalization to Recognition

Proposition

Let A_S be an STA and t be a term. Let $\iota : \mathcal{X} \mapsto \mathcal{Q}$ be an instantiation of A_S .

$$\iota \models \operatorname{\mathit{Reco}}_{\mathcal{A}_{\boldsymbol{S}}}(t) \operatorname{iff} t \in \mathcal{L}(\mathcal{A}_{\mathcal{S}}\iota)$$

}

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Solutions of a Pattern in STA

$$\mathcal{A}_{\mathcal{S}} = \{ egin{array}{ccc} a
ightarrow X_1 \ f(X_2)
ightarrow X_0 \ s(X_1)
ightarrow X_2 \ s(X_3)
ightarrow X_4 \ s(X_5)
ightarrow X_6 \end{array}$$

Does f(s(x)) has a solution on X_0 ?

イロト イポト イヨト イヨト

-

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Solutions of a Pattern in STA

$$\begin{array}{ll} \mathcal{A}_{\mathcal{S}} = \{ & a \rightarrow X_1 & \text{Does } f(s(x)) \text{ has a solution on } X_0? \\ & f(X_2) \rightarrow X_0 & \\ & s(X_1) \rightarrow X_2 & \\ & s(X_3) \rightarrow X_4 & \\ & s(X_5) \rightarrow X_6 & \} \end{array}$$

イロト イポト イヨト イヨト

-

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Solutions of a Pattern in STA

 $\mathcal{A}_{\mathcal{S}} = \{ \begin{array}{ccc} a \to X_1 & \text{Does } f(s(x)) \text{ has a solution on } X_0? \\ f(X_2) \to X_0 & \\ s(X_1) \to X_2 & \sigma_1 = \{x \mapsto X_1\} & \text{if } X_2 = X_2 \\ s(X_3) \to X_4 & \sigma_2 = \{x \mapsto X_3\} & \text{if } X_2 = X_4 \end{array}$

イロト イポト イヨト イヨト

-

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Solutions of a Pattern in STA

 $\mathcal{A}_{\mathcal{S}} = \{ \begin{array}{ccc} a \to X_1 & Does \ f(s(x)) \ has \ a \ solution \ on \ X_0? \\ f(X_2) \to X_0 \\ s(X_1) \to X_2 \\ s(X_3) \to X_4 \\ s(X_5) \to X_6 \end{array} \} \begin{array}{c} \sigma_1 = \{x \mapsto X_1\} & \text{if} \quad X_2 = X_2 \\ \sigma_2 = \{x \mapsto X_3\} & \text{if} \quad X_2 = X_4 \\ \sigma_3 = \{x \mapsto X_5\} & \text{if} \quad X_2 = X_6 \end{array}$

Solutions of a Pattern in STA

 S_X^t denotes the set of solutions (σ, ϕ) of t on X

Formula specifying \mathcal{R} -closed Automata

Definition $(\phi_{\mathcal{R},\mathcal{A}_{s}}^{RwA})$

Let \mathcal{A}_S be an STA and \mathcal{R} be a TRS such that $\mathcal{A}_S = \langle \mathcal{X}, \Sigma, \mathcal{X}_F, \Delta \rangle$.

$$\phi_{\mathcal{R},\mathcal{A}_{\boldsymbol{S}}}^{\boldsymbol{R}\boldsymbol{w}\mathcal{A}} \stackrel{\text{def}}{=} \bigwedge_{l \to r \in \mathcal{R}} \bigwedge_{\boldsymbol{X} \in \mathcal{X}_{\mathcal{Q}}} \bigwedge_{(\sigma,\alpha) \in \boldsymbol{S}_{\boldsymbol{X}}^{\boldsymbol{l}}} (\alpha \Rightarrow \textit{reco}(r\sigma,\boldsymbol{X}))$$

Formula specifying \mathcal{R} -closed Automata

Definition $(\phi_{\mathcal{R},\mathcal{A}_{s}}^{RwA})$

Let \mathcal{A}_S be an STA and \mathcal{R} be a TRS such that $\mathcal{A}_S = \langle \mathcal{X}, \Sigma, \mathcal{X}_F, \Delta \rangle$.

$$\phi_{\mathcal{R},\mathcal{A}_{\boldsymbol{S}}}^{\boldsymbol{R}\boldsymbol{w}\mathcal{A}} \stackrel{\text{def}}{=} \bigwedge_{l \to r \in \mathcal{R}} \bigwedge_{X \in \mathcal{X}_{\mathcal{Q}}} \bigwedge_{(\sigma,\alpha) \in \boldsymbol{S}_{\boldsymbol{X}}^{\boldsymbol{l}}} (\alpha \Rightarrow \textit{reco}(r\sigma, X))$$

Formula specifying \mathcal{R} -closed Automata

Definition $(\phi_{\mathcal{R},\mathcal{A}_{s}}^{RwA})$

Let \mathcal{A}_S be an STA and \mathcal{R} be a TRS such that $\mathcal{A}_S = \langle \mathcal{X}, \Sigma, \mathcal{X}_F, \Delta \rangle$.

$$\phi_{\mathcal{R},\mathcal{A}_{\boldsymbol{S}}}^{\boldsymbol{R}\boldsymbol{w}\mathcal{A}} \stackrel{\text{def}}{=} \bigwedge_{l \to r \in \mathcal{R}} \bigwedge_{\boldsymbol{X} \in \mathcal{X}_{\mathcal{Q}}} \bigwedge_{(\sigma,\alpha) \in \boldsymbol{S}_{\boldsymbol{X}}^{\boldsymbol{l}}} (\alpha \Rightarrow reco(r\sigma,\boldsymbol{X}))$$

Formula specifying $\mathcal{R}-closed$ Automata

Definition $(\phi_{\mathcal{R},\mathcal{A}_{\boldsymbol{s}}}^{\boldsymbol{R}\boldsymbol{w}\boldsymbol{A}})$

Let \mathcal{A}_{S} be an STA and \mathcal{R} be a TRS such that $\mathcal{A}_{S} = \langle \mathcal{X}, \Sigma, \mathcal{X}_{F}, \Delta \rangle$.

$$\phi_{\mathcal{R},\mathcal{A}_{\boldsymbol{S}}}^{\boldsymbol{R}\boldsymbol{w}\boldsymbol{A}} \stackrel{def}{=} \bigwedge_{l \to r \in \mathcal{R}} \bigwedge_{\boldsymbol{X} \in \mathcal{X}_{\mathcal{Q}}} \bigwedge_{(\sigma,\alpha) \in \boldsymbol{S}_{\boldsymbol{X}}^{\boldsymbol{l}}} (\alpha \Rightarrow reco(r\sigma,\boldsymbol{X}))$$

Proposition

Let A_S and \mathcal{R} be respectively an STA and a TRS. Let \mathcal{Q} be a set of states and $\iota : \mathcal{X} \to \mathcal{Q}$ be an instantiation of A_S . Thus,

$$\iota \models \phi_{\mathcal{R},\mathcal{A}s}^{\mathsf{RwA}}$$
 iff $\mathcal{A}_{S}\iota$ is \mathcal{R} – closed

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Formula of Forbidden Terms

Definition $(\phi_{\mathcal{A}_{\boldsymbol{s}}}^{\boldsymbol{B} \boldsymbol{a} \boldsymbol{d}})$

Let \mathcal{A}_S be an STA $\langle \mathcal{X}, \Sigma, \mathcal{X}_F, \Delta \rangle$ and *Bad* be a finite set of terms.

$$\phi_{\mathcal{A}_{\boldsymbol{S}}}^{\text{Bad}} \stackrel{\text{def}}{=} \bigwedge_{t \in \text{Bad}} (\neg(\text{reco}_{\mathcal{A}_{\boldsymbol{S}}}(t)))$$

Tree automata with Variables as States Characterization of Conclusive Rewriting Approximations

Formula of Forbidden Terms

Definition $(\phi_{\mathcal{A}_{\boldsymbol{s}}}^{\boldsymbol{B}\boldsymbol{a}\boldsymbol{d}})$

Let \mathcal{A}_S be an STA $\langle \mathcal{X}, \Sigma, \mathcal{X}_F, \Delta \rangle$ and *Bad* be a finite set of terms.

$$\phi_{\mathcal{A}_{\boldsymbol{S}}}^{\mathsf{Bad}} \stackrel{\text{def}}{=} \bigwedge_{t \in \mathsf{Bad}} (\neg(\mathsf{reco}_{\mathcal{A}_{\boldsymbol{S}}}(t)))$$

Proposition

Let Q be a set of states and ι be an instantiation $\mathcal{X} \to Q$ of \mathcal{A}_S .

$$\iota \models \phi_{\mathcal{A}_{\mathcal{S}}}^{\mathit{Bad}} \textit{ iff } \mathcal{L}(\mathcal{A}_{\mathcal{S}}^{\iota}) \cap \mathit{Bad} = \emptyset$$

Conclusive Analysis from Formula Satisfaction

Theorem

Let A_S be an STA and A be an automaton such that $A \subseteq A_S$. Let \mathcal{R} be a TRS and Bad be a finite set of terms. Let ι be an instantiation of A_S .

 $\iota \models \phi_{\mathcal{A}_{S}}^{\mathsf{Bad}} \land \phi_{\mathcal{R},\mathcal{A}_{S}}^{\mathsf{RwA}} \text{ iff } \mathcal{A}_{S}\iota \text{ is a conclusive } (\mathcal{A},\mathcal{R}) \text{ over } - \text{approximation}$

Example of Formula characterizing a Conclusive Approximation

Inputs

• $\mathcal{R} = \{f(x) \rightarrow f(s(s(x))), even(f(s(s(x))))) \rightarrow even(f(x)), even(f(x)))\}$ $even(f(0)) \rightarrow true, even(f(s(0))) \rightarrow false$ • $Bad = \{ false \}$ • $\mathcal{A} = \langle \mathcal{Q}, \Sigma, F, \delta \rangle$ with • $Q = \{q_0, q_1, q_2\}$ • $\Sigma = \{f : 1, s : 1, 0 : 0, even : 1, true : 0, false : 0\}$ • $F = \{a_2\}$ • $\delta = \{even(q_1) \rightarrow q_2, f(q_0) \rightarrow q_1, 0 \rightarrow q_0\}$ • $\mathcal{A}_{S} = \langle \mathcal{X}, \Sigma, \mathcal{X}_{F}, \Delta \rangle$ with • $\mathcal{X} = \{X_{a_1}, \ldots, X_{a_n}\}$ • $\mathcal{X}_F = \{X_{a_2}\}$ • $\Delta = \{ true \rightarrow X_{q_{10}}, false \rightarrow X_{q_{11}}, s(X_{q_E}) \rightarrow X_{q_E}, s(X_{q_A}) \rightarrow X_{q_E}, 0 \rightarrow X_{q_0} \}$ $even(X_{a_{0}}) \rightarrow X_{a_{7}}, even(X_{a_{1}}) \rightarrow X_{a_{2}}, f(X_{a_{8}}) \rightarrow X_{a_{0}}, f(X_{a_{6}}) \rightarrow X_{a_{3}},$ $f(X_{a_0}) \rightarrow X_{a_1}$ イロト イポト イヨト イヨト

Example of Formula characterizing a Conclusive Approximation

Inputs

• $\mathcal{R} = \{f(x) \rightarrow f(s(s(x))), even(f(s(s(x))))) \rightarrow even(f(x)), even(f(x)))\}$ $even(f(0)) \rightarrow true, even(f(s(0))) \rightarrow false$ • $Bad = \{ false \}$ • $\mathcal{A} = \langle \mathcal{Q}, \Sigma, F, \delta \rangle$ with • $Q = \{q_0, q_1, q_2\}$ • $\Sigma = \{f : 1, s : 1, 0 : 0, even : 1, true : 0, false : 0\}$ • $F = \{a_2\}$ • $\delta = \{even(q_1) \rightarrow q_2, f(q_0) \rightarrow q_1, 0 \rightarrow q_0\}$ • $\mathcal{A}_{S} = \langle \mathcal{X}, \Sigma, \mathcal{X}_{F}, \Delta \rangle$ with • $\mathcal{X} = \{X_{a_1}, \ldots, X_{a_n}\}$ • $\mathcal{X}_F = \{X_{a_2}\}$ • $\Delta = \{ true \rightarrow X_{q_{10}}, false \rightarrow X_{q_{11}}, s(X_{q_{E}}) \rightarrow X_{q_{E}}, s(X_{q_{A}}) \rightarrow X_{q_{E}}, 0 \rightarrow X_{q_{D}} \}$ $even(X_{a_{0}}) \rightarrow X_{a_{7}}, even(X_{a_{1}}) \rightarrow X_{a_{2}}, f(X_{a_{8}}) \rightarrow X_{a_{0}}, f(X_{a_{6}}) \rightarrow X_{a_{3}},$ $f(X_{a_0}) \rightarrow X_{a_1}$ イロト イポト イヨト イヨト

Contents

Introduction

- 2 Some details about Rewriting Approximations
 - Tree Automata
 - Tree Automata & Patterns
 - *R*-closed Tree Automata = Rewriting Approximations
- 3 Characterization of Conclusive Approximations
 - Tree automata with Variables as States
 - Characterization of Conclusive Rewriting Approximations

4 Conclusion

To summarize

- + High level expertise is kicked out
 - $\bullet\,$ Characterization of conclusive approximations by a formula $\phi\,$
 - If $\exists \iota$. $\iota \models \phi$ then trivial construction of the resulting automaton
 - Automated semi-algorithm for proving unreachability
- Formula are huge. Needs of techniques for solving such formulae
 - $\bullet\,$ Mona : OK until 15 variables and KO ${>}15$

・ロト ・ 同ト ・ ヨト ・ ヨト

Work in progress & Future Works

- Solving formulae using Symbolic techniques (à la Mona) *to be published*
- Solving formulae using Constraint techniques
- Exploring other ways to represent rewriting approximations

Questions

Thanks for your attention

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae

イロト イ理ト イヨト イヨト

э