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Term Reachability Analysis as a Verification Technique

Rewriting techniques used for
Verification of Java programs : [5]
Verification of security protocols : [3,13,15]
Communication protocols : [2]

State of the studied system = Term

Sets of terms specified by tree automata languages

Behavior of the system = Rewriting relation

2 general approaches : Exact computation or approximated computation
of rewriting successors
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Verifying a System Σ using Exact Computations

R : TRS or tree transducer
Computation of theoretical fix-point automaton Af from an initial
one A0 representing initial configurations of Σ

Verifying a property p
A¬p : set of bad configuration forbidden terms
L(Af )

⋂
L(A¬p) = ∅

A

?

A0
 pAf

R*

L(A0) ⊆ L(A1) ⊆ . . . ⊆ L(Af )
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Verifying a System Σ using Approximations

A

?

A0
 pAf

R*

Computation of an automaton Aapp : L(Af ) ⊆ L(Aapp)

Fine grained approximation functions for precise approximations
High level Expertise is required
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To summarize

Verification of Σ can be done via computation of rewriting
approximations

High level expertise is required for conclusive approximations
Question : Can we kick out these expertise ?
First and naive answer : YES WE CAN. . .

Exhaustive exploration
of the computable automata is sufficient. . .

but intractable

Second and more intricate answer :

characterize conclusive
approximations by logical formulae and solve them
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Tree Automata
Tree Automata & Patterns
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Tree Automaton and Term Recognition

Example A = 〈Q, Σ, F , δ〉 with
Σ={a : 0, b : 0, g : 1, f : 2}
Q={q1, q2, q3, qf }, F={qf }
δ={ a→ q1

g(q1)→ q2
b → q3
f (q2, q3)→ qf }

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae



Introduction
Some details about Rewriting Approximations
Characterization of Conclusive Approximations

Conclusion

Tree Automata
Tree Automata & Patterns
R−closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example A = 〈Q, Σ, F , δ〉 with
Σ={a : 0, b : 0, g : 1, f : 2}
Q={q1, q2, q3, qf }, F={qf }
δ={ a→ q1

g(q1)→ q2
b → q3
f (q2, q3)→ qf }

f

g

a

b

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae



Introduction
Some details about Rewriting Approximations
Characterization of Conclusive Approximations

Conclusion

Tree Automata
Tree Automata & Patterns
R−closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example A = 〈Q, Σ, F , δ〉 with
Σ={a : 0, b : 0, g : 1, f : 2}
Q={q1, q2, q3, qf }, F={qf }
δ={ a→ q1

g(q1)→ q2
b → q3
f (q2, q3)→ qf }

f

g

q1

b

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae



Introduction
Some details about Rewriting Approximations
Characterization of Conclusive Approximations

Conclusion

Tree Automata
Tree Automata & Patterns
R−closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example A = 〈Q, Σ, F , δ〉 with
Σ={a : 0, b : 0, g : 1, f : 2}
Q={q1, q2, q3, qf }, F={qf }
δ={ a→ q1

g(q1)→ q2
b → q3
f (q2, q3)→ qf }

f

q2 b

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae



Introduction
Some details about Rewriting Approximations
Characterization of Conclusive Approximations

Conclusion

Tree Automata
Tree Automata & Patterns
R−closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example A = 〈Q, Σ, F , δ〉 with
Σ={a : 0, b : 0, g : 1, f : 2}
Q={q1, q2, q3, qf }, F={qf }
δ={ a→ q1

g(q1)→ q2
b → q3
f (q2, q3)→ qf }

f

q2 q3

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae



Introduction
Some details about Rewriting Approximations
Characterization of Conclusive Approximations

Conclusion

Tree Automata
Tree Automata & Patterns
R−closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example A = 〈Q, Σ, F , δ〉 with
Σ={a : 0, b : 0, g : 1, f : 2}
Q={q1, q2, q3, qf }, F={qf }
δ={ a→ q1

g(q1)→ q2
b → q3
f (q2, q3)→ qf }

qf

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae



Introduction
Some details about Rewriting Approximations
Characterization of Conclusive Approximations

Conclusion

Tree Automata
Tree Automata & Patterns
R−closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example A = 〈Q, Σ, F , δ〉 with
Σ={a : 0, b : 0, g : 1, f : 2}
Q={q1, q2, q3, qf }, F={qf }
δ={ a→ q1

g(q1)→ q2
b → q3
f (q2, q3)→ qf }

qf

f (g(a), b)→∗A qf

Y. Boichut, B. Dao and V. Murat Characterizing Conclusive Approximations by Logical Formulae



Introduction
Some details about Rewriting Approximations
Characterization of Conclusive Approximations

Conclusion

Tree Automata
Tree Automata & Patterns
R−closed Tree Automata = Rewriting Approximations

Tree Automaton and Term Recognition

Example A = 〈Q, Σ, F , δ〉 with
Σ={a : 0, b : 0, g : 1, f : 2}
Q={q1, q2, q3, qf }, F={qf }
δ={ a→ q1

g(q1)→ q2
b → q3
f (q2, q3)→ qf }

Language of A
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Tree Automata
Tree Automata & Patterns
R−closed Tree Automata = Rewriting Approximations

Does a Pattern have a Solution in A ?

Given a term t containing variables and A, a solution of t on the
state q ∈ Q is a substitution σ : X 7→ Q such that

tσ→∗Aq

Example : t = f (g(x), b) and
A = 〈Q, Σ, F , δ〉 with

δ={ a→ q1
g(q1)→ q2
b → q3
f (q2, q3)→ qf }

An example of solution

σ = {x 7→ q1} is a solution of t
on qf

f (g(q1), b)→∗A qf
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Tree Automata
Tree Automata & Patterns
R−closed Tree Automata = Rewriting Approximations

Rewriting Approximations

Inputs
A0 : an initial tree automaton
A : an automaton such that A0 ⊆ A
R : a set of rewrite rules l→r

If for any l→r ∈ R, any q of A one has

any solution σ of l on the state q ⇒ σ is a solution of r on q

then

R(L(A)) ⊆ L(A) (A is R− closed)

In other words

R∗(L(A0)) ⊆ L(A)

Given A0 and R, A is an (A0,R) over-approximation
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Example of Rewriting Approximation

Inputs
A0 = 〈{qf , qa}, {f : 1, s : 1, a : 0}, {qf }, {a→qa, f (qa)→qf }〉
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Symbolic Tree Automata

A = { a→ qa
f (qs(a))→ qf
s(qa)→ qs(a) }

AS = { a→ X1
f (X2)→ X0
s(X1)→ X2

ι = { X0 7→ qf ,
X1 7→ qa,
X2 7→ qs(a) }

Proposition

Let AS be an STA. If A ⊆ AS modulo renaming then

∀ι.L(A) ⊆ L(AS ι)
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Reduction seen as Formula

AS = { a→ X1
f (X2)→ X0
s(X1)→ X2
s(X3)→ X4
s(X5)→X6 }

f (s(a))
φ→ X0

f (s(a))
φ→ X0 if s(a)

φ1→ X2
and φ = φ1 ∧ X0 = X0

s(a)
φ1→ X2 if a

φ2→ X1 and
φ1 = φ2 ∧ X2 = X2

OR (a
φ3→ X3 and

φ1 = φ3 ∧ X4 = X2)
OR

(a
φ4→ X5 AND

φ1 = φ4 ∧ X6 = X2)

a
φ2→ X1 if φ2 = (X1 = X1)

a
φ3→ X3 if φ3 = (X1 = X3)

a
φ4→ X5 if φ4 = (X1 = X5)
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Reduction seen as Formula

To summarize,
f (s(a))

φ→ X0 with

φ = X0 = X0 ∧ ( X2 = X2∨
(X4 = X2 ∧ X3 = X1)∨
(X6 = X2 ∧ X5 = X1))

More generally, t
φ→A X denotes the condition under which t can be

recognized into X
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Generalization to Recognition

Definition (RecoAS (t,X ))

Let AS be an STA such that AS = 〈X ,Σ,XF ,∆〉 and t be a term
without variables.

RecoAS (t,X ) =
∨

Y∈X ,t φ→Y

φ ∧ X = Y

Definition (RecoAS (t))

Let AS be an STA such that AS = 〈X ,Σ,XF ,∆〉 and t be a term
without variables.

RecoAS (t) =
∨

X∈XF

RecoAS (t,X )
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Generalization to Recognition

Proposition

Let AS be an STA and t be a term. Let ι : X 7→ Q be an instantiation of
AS .

ι |= RecoAS (t) iff t ∈ L(AS ι)
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Solutions of a Pattern in STA

AS = { a→ X1
f (X2)→ X0
s(X1)→ X2
s(X3)→ X4
s(X5)→X6 }

Does f (s(x)) has a solution on X0?

σ1 = {x 7→ X1} if X2 = X2
σ2 = {x 7→ X3} if X2 = X4
σ3 = {x 7→ X5} if X2 = X6

S t
X denotes the set of solutions (σ, φ) of t on X
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Formula specifying R−closed Automata

Definition (φRwA
R,AS

)

Let AS be an STA and R be a TRS such that AS = 〈X ,Σ, XF ,∆〉.

φRwA
R,AS

def
=

∧
l→r∈R

∧
X∈XQ

∧
(σ,α)∈S l

X

(α⇒ reco(rσ,X ))

Proposition

Let AS and R be respectively an STA and a TRS. Let Q be a set of
states and ι : X → Q be an instantiation of AS . Thus,

ι |= φRwA
R,AS

iff AS ι is R− closed
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Formula of Forbidden Terms

Definition (φBad
AS

)

Let AS be an STA 〈X ,Σ,XF ,∆〉 and Bad be a finite set of terms.

φBad
AS

def
=

∧
t∈Bad

(¬(recoAS (t)))

Proposition

Let Q be a set of states and ι be an instantiation X → Q of AS .

ι |= φBad
AS

iff L(AιS) ∩ Bad = ∅
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Conclusive Analysis from Formula Satisfaction

Theorem

Let AS be an STA and A be an automaton such that A ⊆ AS . Let R be
a TRS and Bad be a finite set of terms. Let ι be an instantiation of AS .

ι |= φBad
AS
∧ φRwA
R,AS

iff AS ι is a conclusive (A,R) over − approximation
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Example of Formula characterizing a Conclusive
Approximation

Inputs

R = {f (x)→f (s(s(x))), even(f (s(s(x))))→even(f (x)),
even(f (0))→true, even(f (s(0)))→false}
Bad = {false}
A = 〈Q,Σ,F , δ〉 with

Q = {q0, q1, q2}
Σ = {f : 1, s : 1, 0 : 0, even : 1, true : 0, false : 0}
F = {q2}
δ = {even(q1)→q2,f (q0)→q1,0→q0}

AS = 〈X ,Σ,XF ,∆〉 with
X = {Xq0 , . . . ,Xq11}
XF = {Xq2}
∆ = {true→Xq10 , false→Xq11 , s(Xq5)→Xq6 , s(Xq4)→Xq5 , 0→Xq0 ,
even(Xq9)→Xq7 , even(Xq1)→Xq2 , f (Xq8)→Xq9 , f (Xq6)→Xq3 ,
f (Xq0) →Xq1 }
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To summarize

+ High level expertise is kicked out
Characterization of conclusive approximations by a formula φ
If ∃ι. ι |= φ then trivial construction of the resulting automaton
Automated semi-algorithm for proving unreachability

- Formula are huge. Needs of techniques for solving such formulae
Mona : OK until 15 variables and KO >15
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Work in progress & Future Works

Solving formulae using Symbolic techniques (à la Mona) to be
published
Solving formulae using Constraint techniques
Exploring other ways to represent rewriting approximations
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Questions

Thanks for your attention
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